请帮我写出基于keras实现ResNet实现图像二分类的代码
时间: 2024-03-05 12:47:39 浏览: 79
好的,以下是基于Keras实现ResNet实现图像二分类的代码:
```python
import tensorflow as tf
from tensorflow import keras
def resnet_block(inputs, num_filters=16, kernel_size=3, strides=1, activation='relu', batch_normalization=True, conv_first=True):
conv = keras.layers.Conv2D(num_filters, kernel_size=kernel_size, strides=strides, padding='same', kernel_initializer='he_normal', kernel_regularizer=keras.regularizers.l2(1e-4))
x = inputs
if conv_first:
x = conv(x)
if batch_normalization:
x = keras.layers.BatchNormalization()(x)
if activation is not None:
x = keras.layers.Activation(activation)(x)
else:
if batch_normalization:
x = keras.layers.BatchNormalization()(x)
if activation is not None:
x = keras.layers.Activation(activation)(x)
x = conv(x)
return x
def resnet_v1(input_shape, depth, num_classes=2):
if (depth - 2) % 6 != 0:
raise ValueError('Depth must be 6n + 2 (e.g. 20, 32, 44).')
num_filters = 16
num_res_blocks = int((depth - 2) / 6)
inputs = keras.Input(shape=input_shape)
x = resnet_block(inputs=inputs)
for stack in range(3):
for res_block in range(num_res_blocks):
strides = 1
if stack > 0 and res_block == 0:
strides = 2
y = resnet_block(inputs=x, num_filters=num_filters, strides=strides)
y = resnet_block(inputs=y, num_filters=num_filters, activation=None)
if stack > 0 and res_block == 0:
x = resnet_block(inputs=x, num_filters=num_filters, kernel_size=1, strides=strides, activation=None, batch_normalization=False)
x = keras.layers.add([x, y])
x = keras.layers.Activation('relu')(x)
num_filters *= 2
x = keras.layers.AveragePooling2D(pool_size=8)(x)
y = keras.layers.Flatten()(x)
outputs = keras.layers.Dense(num_classes, activation='softmax', kernel_initializer='he_normal')(y)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
input_shape = (32, 32, 3)
depth = 20
model = resnet_v1(input_shape=input_shape, depth=depth, num_classes=2)
model.compile(loss='categorical_crossentropy',
optimizer=keras.optimizers.Adam(),
metrics=['accuracy'])
```
这里采用了ResNet20的结构,输入图片大小为32x32,输出为二分类。你可以根据自己的需求进行修改。同时,需要注意数据集的准备和预处理,以及模型的训练和评估。
阅读全文