import pandas as pd import numpy as np import matplotlib.pyplot as plt file_name ='E:/liuyuan/ceshi/4cmH20_long_breaths.csv' names = ['Time', 'Flow'] data = pd.read_csv(file_name, names =names) start_index = 0 end_index = 50 fig, ax = plt.subplots() plt.xlim(0, 100) plt.ylim(0, 10) time = np.arange(start_index, end_index) flow = np.arange(start_index, end_index) ax.set_xlabel('Time(s)') ax.set_ylabel('Flow(L/s)') ax.set_title('Breath Waveform ') flow = data['Flow'][start_index:end_index] ax.plot(time, flow) plt.show()将这段代码修改为散点图可视化
时间: 2024-03-06 11:51:23 浏览: 85
你可以将代码中的 `ax.plot()` 函数替换为 `ax.scatter()` 函数来绘制散点图。修改后的代码如下:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
file_name = 'E:/liuyuan/ceshi/4cmH20_long_breaths.csv'
names = ['Time', 'Flow']
data = pd.read_csv(file_name, names=names)
start_index = 0
end_index = 50
fig, ax = plt.subplots()
plt.xlim(0, 100)
plt.ylim(0, 10)
time = np.arange(start_index, end_index)
flow = np.arange(start_index, end_index)
ax.set_xlabel('Time(s)')
ax.set_ylabel('Flow(L/s)')
ax.set_title('Breath Waveform')
flow = data['Flow'][start_index:end_index]
ax.scatter(time, flow)
plt.show()
```
这段代码中,我使用 `ax.scatter()` 函数绘制散点图,它的参数与 `ax.plot()` 函数类似,唯一的区别是它将数据点绘制为散点,而不是连成线。你可以根据需要调整 `ax.scatter()` 函数的参数来修改散点图的可视化效果。
阅读全文