voxel_size = 0.01 体素大小为多少
时间: 2024-03-27 16:42:03 浏览: 265
在这段代码中,`voxel_size = 0.01` 表示体素的大小为 10cm(即 0.01m)。这个数值可以根据具体的应用场景和需要进行调整,如果需要更加精细的体素化,可以减小体素的大小;如果需要更快的计算速度,可以增加体素的大小。一般来说,体素大小的选择需要根据点云数据的密度和分布情况、应用场景和计算资源等因素进行综合考虑。
相关问题
import open3d as op3 import numpy as np import copy def read_and_show(): pcd = op3.io.read_point_cloud("demodata/PointCloudXYZRGB.ply") return pcd def downshape(pcd): downpcd = pcd.voxel_down_sample(voxel_size=0.00001) return downpcd #op3.io.write_point_cloud("pdc1",downpcd) def compute_normal_of_clound(pcd): pcd2 = copy.deepcopy(pcd) pcd2.estimate_normals(search_param=op3.geometry.KDTreeSearchParamHybrid( radius=0.01,max_nn=30)) # #op3.visualization.draw_geometries([pcd2]) return pcd2 #op3.io.write_point_cloud("pdc1",pcd2) if __name__ == "__main__": pcd = read_and_show() downpcd = downshape(pcd) op3.visualization.draw_geometries([pcd]) op3.visualization.draw_geometries([downpcd]) downpcd2 = compute_normal_of_clound(downpcd) #op3.visualization.draw_geometries([downpcd2]) print(downpcd.normals[0]) #print(downpcd2.normals[0]) print(pcd2.normals[0]) 这串代码有什么问题
这段代码使用了 open3d 库,并导入了 numpy 和 copy。read_and_show 函数读取了名为 "PointCloudXYZRGB.ply" 的点云数据,并返回了点云对象。downshape 函数将输入的点云对象进行体素下采样,并返回下采样后的点云对象。
import pcl import numpy as np from mayavi import mlab cloud = pcl.load('laser.pcd') vox = cloud.make_voxel_grid_filter() vox.set_leaf_size(0.01, 0.01, 0.01) cloud_downsampled = vox.filter() seg = cloud_downsampled.make_segmenter() seg.set_model_type(pcl.SACMODEL_PLANE) seg.set_method_type(pcl.SAC_RANSAC) seg.set_distance_threshold(0.01) indices, model = seg.segment() obstacles_cloud = cloud_downsampled.extract(indices, negative=True) mlab.figure(bgcolor=(0.1, 0.1, 0.1)) mlab.points3d(cloud_downsampled[:, 0], cloud_downsampled[:, 1], cloud_downsampled[:, 2], mode='point', color=(1, 1, 1), scale_factor=0.05) mlab.points3d(obstacles_cloud[:, 0], obstacles_cloud[:, 1], obstacles_cloud[:, 2], mode='point', color=(1, 0, 0), scale_factor=0.05) mlab.show() 发生如下错误:[pcl::VoxelGrid::applyFilter] Leaf size is too small for the input dataset. Integer indices would overflow.Traceback (most recent call last): File "D:\pythonProject3\障碍物识别2.py", line 25, in <module> mlab.points3d(cloud_downsampled[:, 0], cloud_downsampled[:, 1], cloud_downsampled[:, 2], mode='point', color=(1, 1, 1), scale_factor=0.05) File "pcl\pxi/PointCloud_PointXYZ_180.pxi", line 233, in pcl._pcl.PointCloud.__getitem__ TypeError: an integer is required
这个错误是因为你的点云经过体素滤波后点云数量变少,使用下标索引访问时可能会出现索引越界的问题。可以在代码中加入如下判断来解决这个问题:
```python
if cloud_downsampled.size > 0:
mlab.points3d(cloud_downsampled[:, 0], cloud_downsampled[:, 1], cloud_downsampled[:, 2], mode='point', color=(1, 1, 1), scale_factor=0.05)
if obstacles_cloud.size > 0:
mlab.points3d(obstacles_cloud[:, 0], obstacles_cloud[:, 1], obstacles_cloud[:, 2], mode='point', color=(1, 0, 0), scale_factor=0.05)
```
这段代码会先判断点云是否为空,如果不为空再进行可视化。这样可以避免索引越界的问题。同时也建议在代码中加入一些打印语句来输出点云的数量和其他信息,方便调试。
阅读全文