模仿学习A2C python
时间: 2023-07-18 22:35:44 浏览: 160
PyTorch实施优势演员评论(A2C),近端策略优化(PPO),可扩展的信任区域方法,用于使用Kronecker因子逼近(ACKTR)和生成的对抗模仿学习(GAIL)进行深度强化学习。-Python开发
以下是使用 Python 实现模仿学习和 A2C 算法训练智能体的代码示例:
(1)安装相关依赖库
```
pip install tensorflow gym
```
(2)定义智能体的神经网络结构
```python
import tensorflow as tf
class ActorCritic(tf.keras.Model):
def __init__(self, action_space):
super(ActorCritic, self).__init__()
self.dense1 = tf.keras.layers.Dense(128, activation='relu')
self.policy_logits = tf.keras.layers.Dense(action_space)
self.dense2 = tf.keras.layers.Dense(128, activation='relu')
self.values = tf.keras.layers.Dense(1)
def call(self, inputs):
x = self.dense1(inputs)
logits = self.policy_logits(x)
v = self.dense2(inputs)
values = self.values(v)
return logits, values
```
(3)定义损失函数和优化器
```python
import numpy as np
def compute_loss(logits, values, actions, rewards, dones):
advantage = rewards - values
value_loss = advantage**2
policy = tf.nn.softmax(logits)
entropy = tf.reduce_sum(policy * tf.math.log(policy + 1e-20), axis=1)
log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=actions)
policy_loss = log_prob * tf.stop_gradient(advantage)
policy_loss -= 0.01 * entropy
mask = tf.cast(dones, dtype=tf.float32)
value_loss *= mask
policy_loss *= mask
return tf.reduce_mean(value_loss + policy_loss)
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
```
(4)定义环境和动作空间
```python
import gym
env = gym.make('CartPole-v0')
action_space = env.action_space.n
```
(5)定义模仿学习的数据集
```python
import random
def get_expert_data(env, n_episodes=10):
expert_data = []
for _ in range(n_episodes):
obs = env.reset()
done = False
while not done:
action = env.action_space.sample()
expert_data.append((obs, action))
obs, reward, done, _ = env.step(action)
return expert_data
expert_data = get_expert_data(env)
random.shuffle(expert_data)
```
(6)使用模仿学习的数据集来训练智能体的初始策略
```python
for obs, action in expert_data:
with tf.GradientTape() as tape:
logits, values = model(tf.convert_to_tensor(obs[None, :], dtype=tf.float32))
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=tf.convert_to_tensor([action]))
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
```
(7)使用 A2C 算法对智能体进行训练
```python
def train(env, model, optimizer, n_episodes=1000):
for episode in range(n_episodes):
obs = env.reset()
done = False
episode_reward = 0
while not done:
with tf.GradientTape() as tape:
logits, values = model(tf.convert_to_tensor(obs[None, :], dtype=tf.float32))
action = tf.random.categorical(logits, 1)[0, 0]
next_obs, reward, done, _ = env.step(action.numpy())
episode_reward += reward
next_logits, next_values = model(tf.convert_to_tensor(next_obs[None, :], dtype=tf.float32))
td_target = reward + 0.99 * next_values[0, 0] * (1 - int(done))
advantage = td_target - values[0, 0]
value_loss = advantage**2
log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=tf.convert_to_tensor([action]))
policy_loss = log_prob * tf.stop_gradient(advantage)
entropy = tf.reduce_sum(tf.nn.softmax(logits) * tf.math.log(tf.nn.softmax(logits) + 1e-20))
loss = value_loss + policy_loss - 0.01 * entropy
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
obs = next_obs
print("Episode: {}, Reward: {}".format(episode, episode_reward))
```
(8)对训练好的智能体进行评估和测试
```python
def evaluate(env, model):
obs = env.reset()
done = False
total_reward = 0
while not done:
logits, _ = model(tf.convert_to_tensor(obs[None, :], dtype=tf.float32))
action = tf.argmax(logits, axis=-1)
obs, reward, done, _ = env.step(action.numpy())
total_reward += reward
return total_reward
train(env, model, optimizer)
print("Test Reward: {}".format(evaluate(env, model)))
```
需要注意的是,以上代码示例仅供参考,实际应用中可能需要根据具体情况进行调整和修改,以获得更好的效果。
阅读全文