matlab 编写sigmoid函数
时间: 2023-10-31 07:10:11 浏览: 124
可以使用以下代码编写sigmoid函数:
```
function y = sigmoid(x)
% 计算sigmoid函数
y = 1./(1 + exp(-x));
end
```
其中,`x`为输入的值,`y`为输出的结果。通过调用`sigmoid`函数,可以计算出输入值经过sigmoid函数计算后的结果。
相关问题
用matlab撰写sigmoid函数
在MATLAB中,可以使用以下代码来编写sigmoid函数:
```matlab
function y = sigmoid(x)
y = 1 ./ (1 + exp(-x));
end
```
这段代码定义了一个名为sigmoid的函数,它接受一个输入参数x,并返回对应的sigmoid函数值y。sigmoid函数的定义是1 / (1 + exp(-x)),其中exp()是指数函数。
使用上述代码,你可以在MATLAB中调用sigmoid函数来计算任意输入值的sigmoid函数值。例如,你可以使用以下代码来计算输入值为2的sigmoid函数值:
```matlab
x = 2;
y = sigmoid(x);
disp(y);
```
这将输出sigmoid(2)的结果。
sigmoid函数拟合边缘灰度梯度变化,并确定亚像素级边缘点,如何用MATLAB编写
以下是一种可能的 MATLAB 代码实现:
```
% 读取图像并转为灰度图像
img = imread('image.jpg');
gray_img = rgb2gray(img);
% 计算边缘灰度梯度
gx = imfilter(double(gray_img), [-1 0 1], 'replicate');
gy = imfilter(double(gray_img), [-1; 0; 1], 'replicate');
grad_mag = sqrt(gx.^2 + gy.^2);
% 对梯度幅值进行归一化到[0,1]范围
grad_mag = grad_mag / max(grad_mag(:));
% 对梯度幅值进行sigmoid函数拟合
sigmoid = @(x) 1 ./ (1 + exp(-x));
sigmoid_grad_mag = sigmoid(10 * (grad_mag - 0.5));
% 寻找亚像素级边缘点
[rows, cols] = size(gray_img);
subpixel_pts = zeros(rows, cols);
for r = 2:(rows-1)
for c = 2:(cols-1)
% 如果当前像素点是边缘点,则进行亚像素级插值
if sigmoid_grad_mag(r, c) > 0.5 && ...
sigmoid_grad_mag(r, c-1) < 0.5 && sigmoid_grad_mag(r, c+1) < 0.5 && ...
sigmoid_grad_mag(r-1, c) < 0.5 && sigmoid_grad_mag(r+1, c) < 0.5
% 利用二次拟合求解亚像素级边缘点位置
dx = (sigmoid_grad_mag(r, c+1) - sigmoid_grad_mag(r, c-1)) / 2;
dy = (sigmoid_grad_mag(r+1, c) - sigmoid_grad_mag(r-1, c)) / 2;
dxx = sigmoid_grad_mag(r, c-1) - 2 * sigmoid_grad_mag(r, c) + sigmoid_grad_mag(r, c+1);
dyy = sigmoid_grad_mag(r-1, c) - 2 * sigmoid_grad_mag(r, c) + sigmoid_grad_mag(r+1, c);
dxy = (sigmoid_grad_mag(r+1, c+1) - sigmoid_grad_mag(r+1, c-1) - ...
sigmoid_grad_mag(r-1, c+1) + sigmoid_grad_mag(r-1, c-1)) / 4;
A = [dxx, dxy; dxy, dyy];
b = [-dx; -dy];
p = A \ b;
subpixel_pts(r, c) = c + p(1);
subpixel_pts(r, c) = r + p(2);
end
end
end
% 可视化结果
imshow(gray_img);
hold on;
[y, x] = find(subpixel_pts);
plot(x, y, 'r.');
```
阅读全文