用python写一个lstm神经网络预测代码
时间: 2023-12-17 17:50:27 浏览: 76
LSTM神经网络预测算法 Matlab/python
5星 · 资源好评率100%
好的,下面是一个简单的LSTM神经网络预测代码,使用Python和Keras库实现:
```python
# 导入必要的库
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, LSTM
# 读取数据
data = pd.read_csv('data.csv')
# 数据预处理
data = data.dropna() # 删除缺失值
dataset = data.values # 转化为numpy数组
dataset = dataset.astype('float32') # 转化为float类型
# 将数据集分成训练集和测试集
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
# 准备训练数据和标签
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return np.array(dataX), np.array(dataY)
look_back = 3
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# 将输入数据重塑为LSTM所需的格式
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
# 创建模型
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
# 编译模型
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练模型
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
# 评估模型
trainScore = model.evaluate(trainX, trainY, verbose=0)
print('Train Score: %.2f MSE (%.2f RMSE)' % (trainScore, np.sqrt(trainScore)))
testScore = model.evaluate(testX, testY, verbose=0)
print('Test Score: %.2f MSE (%.2f RMSE)' % (testScore, np.sqrt(testScore)))
# 预测结果
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# 反归一化预测结果
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
```
以上代码是一个简单的LSTM神经网络预测模型,你需要将数据集替换为自己的数据集,并根据需要调整模型参数。
阅读全文