on property:sys.boot_completed=1 bootchart stop # Setup per_boot directory so other .rc could start to use it on boot_completed exec - system system -- /bin/rm -rf /data/per_boot mkdir /data/per_boot 0700 system system encryption=Require key=per_boot_ref start service_network

时间: 2024-04-27 13:20:41 浏览: 11
这段指令是 init.rc 配置文件中的一部分,具体解释如下: - on property:sys.boot_completed=1:当系统启动完成后,执行以下操作。 - bootchart stop:停止 bootchart 工具的数据收集和记录。 - exec - system system -- /bin/rm -rf /data/per_boot:使用系统权限删除 /data/per_boot 目录及其中的所有文件。 - mkdir /data/per_boot 0700 system system encryption=Require key=per_boot_ref:创建 /data/per_boot 目录,权限为 0700,所属用户和用户组均为 system,启用加密,并使用 per_boot_ref 密钥进行加密。 - start service_network:启动名为 service_network 的服务。 这组命令的作用是在系统启动完成后,停止 bootchart 工具的数据收集和记录,清空 /data/per_boot 目录并重新创建加密的 per_boot 目录,并启动 service_network 服务。该服务的具体作用没有在该配置文件中给出,可能是启动网络相关的服务。
相关问题

class DATA_LOADER(object): def __init__(self, opt): if opt.matdataset: if opt.dataset == 'imageNet1K': self.read_matimagenet(opt) else: self.read_matdataset(opt) self.index_in_epoch = 0 self.epochs_completed = 0

这段代码定义了一个名为DATA_LOADER的类,用于加载数据集。让我来解释一下这段代码的逻辑: 该类的构造函数__init__接受一个参数opt,表示数据加载的选项。 首先,代码检查opt中的matdataset属性是否为True。如果是,说明数据集是以MATLAB格式存储的数据集。 接下来,代码判断opt中的dataset属性是否为'imageNet1K'。如果是,说明要加载的数据集是ImageNet1K数据集,然后调用self.read_matimagenet(opt)函数来读取MATLAB格式的ImageNet1K数据。 如果不是'imageNet1K',则调用self.read_matdataset(opt)函数来读取其他MATLAB格式的数据集。 最后,代码初始化self.index_in_epoch为0,表示当前批次中样本的索引。self.epochs_completed初始化为0,表示已经完成的轮数。 该类的作用是根据给定的选项加载数据集,并提供一些方法来获取训练样本。在实例化该类后,可以通过调用类对象的方法来获取训练样本数据。

adb shell getprop sys.boot_completed

这是一个 Android 系统命令,用于获取系统启动状态。该命令会返回一个布尔值,表示系统是否已经完全启动。如果返回值为 "1",表示系统已经启动完成;如果返回值为 "0",表示系统尚未启动完成。在 Android 开发中,该命令常用于等待系统启动完成后再执行某些操作,以避免因为系统未完全启动而导致的问题。

相关推荐

import tkinter as tk from tkinter import filedialog import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler class DataImporter: def init(self, master): self.file_path = self.master = master self.master.title("数据导入") # 创建用于显示文件路径的标签 self.path_label = tk.Label(self.master, text="请先导入数据集!") self.path_label.pack(pady=10) # 创建“导入数据集”按钮 self.load_button = tk.Button(self.master, text="导入数据集", command=self.load_data) self.load_button.pack(pady=10) # 创建“显示数据集”按钮 self.show_button = tk.Button(self.master, text="显示数据集", command=self.show_data) self.show_button.pack(pady=10) # 创建“退出程序”按钮 self.quit_button = tk.Button(self.master, text="退出程序", command=self.master.quit) self.quit_button.pack(pady=10) # 创建一个空的 DataFrame 用于存放数据集 self.data = pd.DataFrame() def load_data(self): # 弹出文件选择对话框 file_path = filedialog.askopenfilename() # 如果用户选择了文件,则导入数据集 if file_path: self.data = pd.read_csv(file_path) self.path_label.config(text=f"已导入数据集:{file_path}") else: self.path_label.config(text="未选择任何文件,请选择正确的文件") def show_data(self): if not self.data.empty: # 创建一个新窗口来显示数据集 top = tk.Toplevel(self.master) top.title("数据集") # 创建用于显示数据集的表格 table = tk.Text(top) table.pack() # 将数据集转换为字符串并显示在表格中 table.insert(tk.END, str(self.data)) table.config(state=tk.DISABLED) # 创建“数据预处理”按钮 process_button = tk.Button(top, text="数据预处理", command=self.process_data) process_button.pack(pady=10) else: self.path_label.config(text="请先导入数据集") def process_data(self): try: self.data = pd.read_csv(self.file_path) missing_values = self.data.isnull().sum() for col in self.data.columns: mean = np.mean(self.data[col]) std = np.std(self.data[col]) outliers = [x for x in self.data[col] if (x > mean + 2 * std)] if len(outliers) > 0: print('Column {} has outliers: {}'.format(col, outliers)) scaler = StandardScaler() data_scaled = scaler.fit_transform(self.data) print('Data preprocessing completed.') except Exception as e: print('Error: ' + str(e)) if name == "main": root = tk.Tk() app = DataImporter(root) root.geometry("400x300+100+100") root.mainloop()上面的这段代码中,file_path么有定义属性,帮我按照代码的环境,补全属性

class Process: def __init__(self, pid, arrival_time, burst_time): self.pid = pid self.arrival_time = arrival_time self.burst_time = burst_time self.waiting_time = 0 self.turnaround_time = 0 self.response_ratio = 0 self.start_time = 0 self.complete_time = 0 def hrrn(processes): n = len(processes) current_time = 0 completed_processes = [] while len(completed_processes) < n: # 计算每个进程的响应比 for p in processes: if p not in completed_processes: waiting_time = current_time - p.arrival_time p.response_ratio = 1 + waiting_time / p.burst_time # 选择响应比最大的进程执行 selected_process = max(processes, key=lambda x: x.response_ratio) selected_process.start_time = current_time selected_process.complete_time = current_time + selected_process.burst_time selected_process.turnaround_time = selected_process.complete_time - selected_process.arrival_time current_time = selected_process.complete_time completed_processes.append(selected_process) return completed_processes # 创建进程列表 processes = [ Process(1, 0, 10), Process(2, 1, 5), Process(3, 2, 8), Process(4, 3, 6), ] # 运行调度算法 completed_processes = hrrn(processes) # 输出结果 total_wait_time = sum([p.waiting_time for p in completed_processes]) total_turnaround_time = sum([p.turnaround_time for p in completed_processes]) total_weighted_turnaround_time = sum([p.turnaround_time / p.burst_time for p in completed_processes]) for p in completed_processes: print( f"Process {p.pid}:到达时间 {p.arrival_time},所需执行时间{p.burst_time},开始时间{p.start_time},结束时间 {p.complete_time},周转时间 {p.turnaround_time},带权周转时间 {p.turnaround_time / p.burst_time:.2f}") print(f"平均周转时间:{total_turnaround_time / len(completed_processes):.2f}") print(f"平均带权周转时间:{total_weighted_turnaround_time / len(completed_processes):.2f}") 解释这段代码的设计思路

class Process: def init(self, pid, arrival_time, burst_time): self.pid = pid #进程id self.arrival_time = arrival_time #到达时间 self.burst_time = burst_time #执行时间 self.waiting_time = 0 #等待时间 self.turnaround_time = 0 #周转时间 self.response_ratio = 0 #响应比 self.start_time = 0 #开始时间 self.complete_time = 0 #结束时间 def hrrn(processes): n = len(processes) current_time = 0 completed_processes = [] while len(completed_processes) < n: # 计算每个进程的响应比 for p in processes: if p not in completed_processes: waiting_time = current_time - p.arrival_time p.response_ratio = 1 + waiting_time / p.burst_time #响应比=1+作业等待时间/估计运行时间 # 选择响应比最大的进程执行 selected_process = max(processes, key=lambda x: x.response_ratio) selected_process.start_time = current_time selected_process.complete_time = current_time + selected_process.burst_time selected_process.turnaround_time = selected_process.complete_time - selected_process.arrival_time current_time = selected_process.complete_time completed_processes.append(selected_process) return completed_processes #重复上述过程直到所有进程都完成。 # 创建进程列表 processes = [ Process(1, 0, 7), #(进程id,到达时间,执行时间) Process(2, 1, 8), Process(3, 2, 6), Process(4, 3, 4), ] # 运行调度算法 completed_processes = hrrn(processes) # 输出结果 total_wait_time = sum([p.waiting_time for p in completed_processes]) total_turnaround_time = sum([p.turnaround_time for p in completed_processes]) total_weighted_turnaround_time = sum([p.turnaround_time / p.burst_time for p in completed_processes]) for p in completed_processes: print( f"Process {p.pid}:到达时间 {p.arrival_time},所需执行时间{p.burst_time},开始时间{p.start_time},结束时间 {p.complete_time},周转时间 {p.turnaround_time},带权周转时间 {p.turnaround_time / p.burst_time:.2f}") print(f"平均周转时间:{total_turnaround_time / len(completed_processes):.2f}") print(f"平均带权周转时间:{total_weighted_turnaround_time / len(completed_processes):.2f}") #对进程列表进行修改 #结果预计为: # Process 1:到达时间 0,所需执行时间7,开始时间0,结束时间 7,周转时间 7,带权周转时间 1.00 # Process 4:到达时间 3,所需执行时间4,开始时间7,结束时间 11,周转时间 8,带权周转时间 2.00 # Process 3:到达时间 2,所需执行时间6,开始时间11,结束时间 17,周转时间 15,带权周转时间 2.50 # Process 2:到达时间 1,所需执行时间8,开始时间17,结束时间 25,周转时间 24,带权周转时间 3.00 # 平均周转时间:13.50 # 平均带权周转时间:2.12 简述上述程序的设计思路

优化以下Oracle语句: SELECT SUBSTR(msn.serial_number, 1, 10) genset_sn, msi2.segment1 Genset_BOM_NUM, msi2.inventory_item_id, msi.segment1 key_component, mut1.serial_number component_sn, msi.description component_desc, wdj.date_completed, (SELECT MAX(aps.vendor_name) FROM ap_suppliers aps, bom_resources bor, mtl_unit_transactions mut, po_headers_all poh, po_lines_all pol, wip_osp_resources_val_v wor WHERE aps.vendor_id = poh.vendor_id AND bor.resource_id = wor.resource_id AND poh.po_header_id = pol.po_header_id AND pol.item_id = bor.purchase_item_id AND wor.wip_entity_id = mut.transaction_source_id AND mut.serial_number = mut1.serial_number AND mut.inventory_item_id = mut1.inventory_item_id AND mut.organization_id = mut1.organization_id AND mut.receipt_issue_type = 2 AND mut.transaction_source_type_id = 5 ) supplier FROM mtl_material_transactions mmt1, mtl_material_transactions mmt2, mtl_parameters mpa, mtl_serial_numbers msn, mtl_system_items msi, mtl_system_items msi2, mtl_transaction_types mtt1, mtl_transaction_types mtt2, mtl_unit_transactions mut1, mtl_unit_transactions mut2, wip_discrete_jobs_v wdj WHERE mmt1.inventory_item_id = mut1.inventory_item_id AND mmt1.organization_id = mut1.organization_id AND WDJ.PRIMARY_ITEM_ID = msi2.INVENTORY_ITEM_ID AND mmt1.transaction_id = mut1.transaction_id AND mmt1.transaction_source_id = wdj.wip_entity_id AND mmt1.transaction_type_id = mtt1.transaction_type_id AND mtt1.transaction_type_name = 'WIP Issue' AND NOT EXISTS (SELECT 'WIP Negative Issue or WIP Return' FROM mtl_material_transactions mmt3, mtl_transaction_types mtt3, mtl_unit_transactions mut3 WHERE mmt3.transaction_id = mut3.transaction_id AND mmt3.transaction_type_id = mtt3.transaction_type_id AND mmt3.transaction_date > mmt1.transaction_date AND mtt3.transaction_type_name IN ('WIP Negative Issue', 'WIP Return') AND mut3.serial_number = mut1.serial_number AND mut3.inventory_item_id = mut1.inventory_item_id) AND mmt2.transaction_id = mut2.transaction_id AND mmt2.transaction_source_id = wdj.wip_entity_id AND mmt2.transaction_type_id = mtt2.transaction_type_id AND mtt2.transaction_type_name = 'WIP Completion' AND mpa.organization_code = 'WHP' AND msn.current_organization_id = mpa.organization_id AND LENGTH(msn.serial_number) >= 10 AND msi.inventory_item_id = mmt1.inventory_item_id AND msi.organization_id = mmt1.organization_id AND (msi.planning_make_buy_code = 2 OR msi.segment1 LIKE 'SO%') AND mut2.serial_number = msn.serial_number AND mut2.inventory_item_id = msn.inventory_item_id AND mut2.organization_id = mpa.organization_id AND msi2.ORGANIZATION_ID = '323'

最新推荐

recommend-type

鸡国大冒险运行程序,点开即用

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。