python 实现对二维码(qr码)的检测与定位
时间: 2024-01-22 11:21:29 浏览: 177
在Python中,可以使用OpenCV库来实现对二维码的检测与定位。下面是一个基本的流程:
1. 导入必要的库
```python
import cv2
import numpy as np
from pyzbar.pyzbar import decode
```
2. 读取图像并转为灰度图
```python
img = cv2.imread('qrcode.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
```
3. 对图像进行二值化处理
```python
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
```
4. 对二值化后的图像进行轮廓检测
```python
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
```
5. 遍历轮廓并筛选出二维码区域
```python
for contour in contours:
area = cv2.contourArea(contour)
if area > 1000:
perimeter = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True)
if len(approx) == 4:
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
```
6. 解码二维码
```python
decoded = decode(gray)
for d in decoded:
x, y, w, h = d.rect
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 2)
barcodeData = d.data.decode("utf-8")
```
完整代码如下:
```python
import cv2
import numpy as np
from pyzbar.pyzbar import decode
# 读取图像并转为灰度图
img = cv2.imread('qrcode.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 对图像进行二值化处理
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 对二值化后的图像进行轮廓检测
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# 遍历轮廓并筛选出二维码区域
for contour in contours:
area = cv2.contourArea(contour)
if area > 1000:
perimeter = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True)
if len(approx) == 4:
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
# 解码二维码
decoded = decode(gray)
for d in decoded:
x, y, w, h = d.rect
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 2)
barcodeData = d.data.decode("utf-8")
# 显示结果
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在运行完代码后,可以看到二维码被框出,并在下方输出二维码的内容。
阅读全文