根据水下光传播路径和0度45度90度135度 偏振图片进行水下图像增强 python程序
时间: 2024-01-15 18:04:55 浏览: 133
基于python的水下图像增强和颜色恢复
5星 · 资源好评率100%
下面是一个简单的 Python 程序,用于根据水下光传播路径和偏振图像进行水下图像增强:
```python
import cv2
import numpy as np
# 读取水下图像和偏振图像
underwater_image = cv2.imread('underwater_image.png')
polarized_image_0 = cv2.imread('polarized_image_0.png')
polarized_image_45 = cv2.imread('polarized_image_45.png')
polarized_image_90 = cv2.imread('polarized_image_90.png')
polarized_image_135 = cv2.imread('polarized_image_135.png')
# 定义函数,根据偏振图像和水下光传播路径进行增强
def enhance_underwater_image(underwater_image, polarized_image_0, polarized_image_45, polarized_image_90, polarized_image_135):
# 将偏振图像转换为灰度图像
polarized_image_0_gray = cv2.cvtColor(polarized_image_0, cv2.COLOR_BGR2GRAY)
polarized_image_45_gray = cv2.cvtColor(polarized_image_45, cv2.COLOR_BGR2GRAY)
polarized_image_90_gray = cv2.cvtColor(polarized_image_90, cv2.COLOR_BGR2GRAY)
polarized_image_135_gray = cv2.cvtColor(polarized_image_135, cv2.COLOR_BGR2GRAY)
# 计算水下图像中的散射光和直射光
scattered_light = (polarized_image_0_gray + polarized_image_90_gray) / 2.0
direct_light = (polarized_image_45_gray + polarized_image_135_gray) / 2.0
# 计算散射光和直射光之间的差异
diff = scattered_light - direct_light
# 对水下图像进行增强
enhanced_image = underwater_image + np.uint8(diff)
return enhanced_image
# 调用函数,进行水下图像增强
enhanced_image = enhance_underwater_image(underwater_image, polarized_image_0, polarized_image_45, polarized_image_90, polarized_image_135)
# 显示结果
cv2.imshow('Underwater Image', underwater_image)
cv2.imshow('Enhanced Image', enhanced_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在这个程序中,我们使用 OpenCV 库来读取水下图像和偏振图像,并定义了一个函数 `enhance_underwater_image` 来对水下图像进行增强。在函数中,我们首先将偏振图像转换为灰度图像,并计算出水下图像中的散射光和直射光。然后,我们通过计算散射光和直射光之间的差异来对水下图像进行增强。最后,我们调用函数并显示结果。
需要注意的是,这个程序只是一个简单的示例,实际应用中需要根据具体情况进行调整和优化。
阅读全文