单目视觉测距matlab完整程序
时间: 2023-09-04 16:07:22 浏览: 195
以下是一个简单的单目视觉测距matlab程序的示例代码:
```matlab
% 加载图片
img = imread('image.jpg');
% 相机内参
fx = 500; % 焦距
cx = size(img, 2) / 2; % 光心X坐标
fy = 500;
cy = size(img, 1) / 2; % 光心Y坐标
% 物体实际大小
object_width = 0.2; % 单位为米
% 物体在图像上的像素大小
object_pixel_width = 100;
% 计算距离
distance = fx * object_width / object_pixel_width;
% 输出结果
fprintf('物体距离为:%f米\n', distance);
```
这是一个简单的例子,实际应用中需要更多的处理和算法来提高精度。
相关问题
单目视觉测距matlab特征点识别和匹配
单目视觉测距需要通过特征点识别和匹配来实现。以下是一个简单的单目视觉测距matlab程序的示例代码,其中包含了特征点识别和匹配的过程。
```matlab
% 加载图片
img1 = imread('image1.jpg');
img2 = imread('image2.jpg');
% 特征点检测和描述
points1 = detectSURFFeatures(rgb2gray(img1));
points2 = detectSURFFeatures(rgb2gray(img2));
[features1, valid_points1] = extractFeatures(rgb2gray(img1), points1);
[features2, valid_points2] = extractFeatures(rgb2gray(img2), points2);
% 特征点匹配
indexPairs = matchFeatures(features1, features2);
matchedPoints1 = valid_points1(indexPairs(:, 1));
matchedPoints2 = valid_points2(indexPairs(:, 2));
% 计算基础矩阵
[fMatrix, epipolarInliers, status] = estimateFundamentalMatrix(...
matchedPoints1, matchedPoints2, 'Method', 'RANSAC', ...
'NumTrials', 10000, 'DistanceThreshold', 0.1, 'Confidence', 99.99);
% 计算本质矩阵
intrinsics = cameraIntrinsics([fx, fy], [cx, cy], size(img1)[1 2]);
[t1, t2, rotationMatrix, newOrigin] = relativeCameraPose(fMatrix, intrinsics, ...
matchedPoints1(epipolarInliers), matchedPoints2(epipolarInliers));
% 计算距离
baseline = norm(t2 - t1);
distance = fx * baseline / object_pixel_width;
% 输出结果
fprintf('物体距离为:%f米\n', distance);
```
这个例子中使用了SURF特征点检测和描述,然后使用基础矩阵和本质矩阵计算了相机的位姿,从而得到了距离。实际应用中,还需要进行更多的处理和算法来提高精度。
matlab单目视觉测距
单目视觉测距是利用单个摄像头获取场景图像,通过计算机视觉算法得到物体距离的方法。在Matlab中,可以通过以下步骤实现单目视觉测距:
1. 采集并读取图像:使用Matlab中的图像采集工具箱或者相机驱动程序,获取场景图像。
2. 相机标定:通过摄像机标定,获取相机的内参和畸变参数。
3. 物体检测:使用图像处理工具箱或者深度学习算法,对场景图像进行物体检测,获取物体的位置和大小信息。
4. 物体距离计算:利用相机的内参和畸变参数,以及物体在图像中的位置和大小信息,计算物体距离。
需要注意的是,单目视觉测距的精度受到多种因素的影响,如相机分辨率、光照条件、物体表面特征等。因此,在实际应用中需要进行精度评估和误差校正。
阅读全文
相关推荐
















