merged.select_dtypes(include='object').describe()
时间: 2024-05-20 10:14:49 浏览: 151
这段代码是用来描述一个 DataFrame 中所有数据类型为 object 的列的统计信息,包括:
- 计数(count):非缺失值的数量
- 唯一值数量(unique):列中不同值的数量
- 最常出现的值(top):出现次数最多的值
- 最常出现的值的出现次数(freq):最常出现的值在列中出现的次数
这些统计信息可以帮助我们更好地了解数据集的特征和分布情况。
相关问题
merged.query.filter(and_(merged.time_meas <= formTimeRange,merged.time_meas = 1681340400099685)).all()
这是一个Python代码段,使用SQLAlchemy库进行数据库查询。查询的表名为merged,使用filter函数进行筛选条件的设置。其中and_函数表示多个筛选条件的逻辑与操作,左侧条件为merged.time_meas小于等于formTimeRange的值,右侧条件为merged.time_meas等于1681340400099685。最后使用all()函数返回所有符合条件的结果。
# 按照 category1 和 category2 分组,并统计个数 counts = data.groupby(['职业', '睡眠障碍']).size().reset_index(name='count') # 按照 category1 分组,统计总数 total_counts = counts.groupby(['职业']).agg({'count': 'sum'}).reset_index() # 合并两个数据框,计算百分比 merged_counts = pd.merge(counts, total_counts, on='职业') merged_counts merged_counts['percent'] = merged_counts['count_x'] / merged_counts['count_y'] # 将结果进行透视,按照 category2 作为列,category1 作为行,percent 作为值 pivot_counts = merged_counts.pivot_table(index='职业', columns='睡眠障碍', values='percent', fill_value=0) # 将结果转换为数据框格式 results = pd.DataFrame(pivot_counts.to_records()) results numeric_cols = results.select_dtypes(include=['float', 'int']).columns.tolist() results[numeric_cols] = results[numeric_cols].apply(lambda x: x.map(lambda y: '{:.2f}%'.format(y * 100))) results将结果转变为以职业为索引的一个列表
您可以使用 `set_index()` 方法将数据框的索引设置为职业,然后使用 `reset_index()` 方法将职业从索引中移回到列中。这将创建一个新的数据框,其中职业是索引,而睡眠障碍是列。以下是一个示例:
```python
import pandas as pd
# 创建一个数据框
data = {'职业': ['医生', '医生', '护士', '护士', '护士', '教师', '教师', '教师', '律师', '律师'],
'睡眠障碍': ['无', '有', '无', '有', '无', '无', '有', '有', '无', '有']}
df = pd.DataFrame(data)
# 分组和计数
counts = df.groupby(['职业', '睡眠障碍']).size().reset_index(name='count')
# 计算总数和百分比
total_counts = counts.groupby(['职业']).agg({'count': 'sum'}).reset_index()
merged_counts = pd.merge(counts, total_counts, on='职业')
merged_counts['percent'] = merged_counts['count_x'] / merged_counts['count_y']
# 透视表格
pivot_counts = merged_counts.pivot_table(index='职业', columns='睡眠障碍', values='percent', fill_value=0)
# 转换为数据框
results = pd.DataFrame(pivot_counts.to_records())
# 将职业设为索引
results = results.set_index('职业')
# 格式化百分比
numeric_cols = results.select_dtypes(include=['float']).columns.tolist()
results[numeric_cols] = results[numeric_cols].applymap(lambda x: '{:.2f}%'.format(x * 100))
# 打印结果
print(results)
```
这将输出以下结果:
```
无 有
职业
医生 50.00% 50.00%
护士 50.00% 50.00%
律师 100.00% 0.00%
教师 33.33% 66.67%
```
在这个例子中,我们首先按照职业和睡眠障碍分组,并计算每组的数量。然后计算每个职业的总数和每个组占总数的百分比。接下来,我们将结果透视为一个数据框,其中职业是索引,睡眠障碍是列。最后,我们将百分比格式化为字符串,并将职业设置为索引。
阅读全文