svm-knn协同训练代码
时间: 2023-07-09 09:36:45 浏览: 108
论文研究-协同训练支持向量机对煤与瓦斯突出预测的研究 .pdf
SVM-KNN协同训练是一种结合支持向量机和k最近邻分类器的分类方法,并且可以使用协同训练来提高模型的性能。以下是一个简单的使用Python和scikit-learn库实现SVM-KNN协同训练的代码示例:
```python
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
# 生成一个二分类问题数据集
X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_classes=2, random_state=1)
# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
# 定义支持向量机模型和k最近邻分类器模型
svm_model = SVC(kernel='linear', probability=True)
knn_model = KNeighborsClassifier(n_neighbors=3)
# 训练两个模型,并使用测试集进行评估
svm_model.fit(X_train, y_train)
knn_model.fit(X_train, y_train)
svm_pred = svm_model.predict(X_test)
knn_pred = knn_model.predict(X_test)
svm_acc = accuracy_score(y_test, svm_pred)
knn_acc = accuracy_score(y_test, knn_pred)
print("SVM accuracy: {:.2f}%".format(svm_acc * 100))
print("KNN accuracy: {:.2f}%".format(knn_acc * 100))
# 使用协同训练提高模型性能
svm_pred_train = svm_model.predict(X_train)
knn_pred_train = knn_model.predict(X_train)
X_train_new = np.hstack((X_train, svm_pred_train.reshape(-1, 1), knn_pred_train.reshape(-1, 1)))
svm_model_new = SVC(kernel='linear', probability=True)
knn_model_new = KNeighborsClassifier(n_neighbors=3)
svm_model_new.fit(X_train_new, y_train)
knn_model_new.fit(X_train_new, y_train)
svm_pred_new = svm_model_new.predict(X_test)
knn_pred_new = knn_model_new.predict(X_test)
svm_acc_new = accuracy_score(y_test, svm_pred_new)
knn_acc_new = accuracy_score(y_test, knn_pred_new)
print("SVM-KNN accuracy: {:.2f}%".format(svm_acc_new * 100))
print("KNN-SVM accuracy: {:.2f}%".format(knn_acc_new * 100))
```
在上面的代码中,我们首先生成了一个二分类问题的数据集,并将其划分为训练集和测试集。然后,我们定义了两个分类器模型:支持向量机和k最近邻分类器,并对它们进行了训练和评估。接下来,我们使用两个模型对训练集进行预测,并将预测结果作为新特征与原特征合并,然后再使用这些新特征训练新的分类器模型。最后,我们使用测试集对新的模型进行评估,并输出结果。
阅读全文