trainPredict = model.predict(trainX) testPredict = model.predict(testX)是什么意思

时间: 2024-05-28 08:10:05 浏览: 52
这两行代码是在使用机器学习模型对训练集和测试集进行预测。假设你已经训练好了一个模型,trainX是训练集的特征数据,trainPredict是模型对训练集的特征数据进行预测得到的结果;同理,testX是测试集的特征数据,testPredict是模型对测试集的特征数据进行预测得到的结果。这样可以通过比较预测结果和实际结果的差异来评估模型的准确性和泛化能力。
相关问题

解释这段代码 trainPredict = model.predict(trainX) trainPredict = scaler.inverse_transform(trainPredict) testPredict = model.predict(testX) testPredict = scaler.inverse_transform(testPredict) trainY = scaler.inverse_transform([trainY]) testY = scaler.inverse_transform([testY])

这段代码是一个用于神经网络时间序列预测的模型中的预测部分。下面对每一行代码进行解释: 1. `trainPredict = model.predict(trainX)`:使用训练数据集 `trainX` 对模型进行预测,得到预测结果 `trainPredict`。 2. `trainPredict = scaler.inverse_transform(trainPredict)`:由于在训练之前对数据进行了归一化处理,因此在得到预测结果后需要将其还原为原始的数值范围,使用 `scaler.inverse_transform()` 函数实现。 3. `testPredict = model.predict(testX)`:使用测试数据集 `testX` 对模型进行预测,得到预测结果 `testPredict`。 4. `testPredict = scaler.inverse_transform(testPredict)`:同样需要将测试数据集的预测结果还原为原始的数值范围。 5. `trainY = scaler.inverse_transform([trainY])`:同样需要将训练数据集的目标值 `trainY` 进行还原。 6. `testY = scaler.inverse_transform([testY])`:同样需要将测试数据集的目标值 `testY` 进行还原。 其中,`scaler` 是一个用于数据归一化的对象,可以使用 `sklearn.preprocessing` 库中的 `MinMaxScaler()` 函数创建。`trainX` 和 `testX` 是输入的训练数据集和测试数据集,`trainY` 和 `testY` 是训练数据集和测试数据集的目标值。`model` 是训练好的神经网络模型。

将冒号后面的代码改写成一个nn.module类:data1 = pd.read_csv("终极1.csv", usecols=[17], encoding='gb18030') df = data1.fillna(method='ffill') data = df.values.reshape(-1, 1) scaler = MinMaxScaler(feature_range=(0, 1)) data = scaler.fit_transform(data) train_size = int(len(data) * 0.8) test_size = len(data) - train_size train, test = data[0:train_size, :], data[train_size:len(data), :] def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) look_back = 30 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) model = Sequential() model.add(LSTM(50, input_shape=(1, look_back), return_sequences=True)) model.add(LSTM(50)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, epochs=6, batch_size=1, verbose=2) trainPredict = model.predict(trainX) testPredict = model.predict(testX) trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY])

以下是将代码改写为nn.module类的示例: ```python import torch import torch.nn as nn import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler class LSTMModel(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super(LSTMModel, self).__init__() self.hidden_dim = hidden_dim self.num_layers = num_layers self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_() c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_() out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach())) out = self.fc(out[:, -1, :]) return out # 读取数据 data1 = pd.read_csv("终极1.csv", usecols=[17], encoding='gb18030') df = data1.fillna(method='ffill') data = df.values.reshape(-1, 1) # 数据归一化 scaler = MinMaxScaler(feature_range=(0, 1)) data = scaler.fit_transform(data) # 划分数据集 train_size = int(len(data) * 0.8) test_size = len(data) - train_size train, test = data[0:train_size, :], data[train_size:len(data), :] # 创建数据集 def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) look_back = 30 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1)) testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1)) # 模型训练 input_dim = 1 hidden_dim = 50 output_dim = 1 num_layers = 2 model = LSTMModel(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) num_epochs = 6 for epoch in range(num_epochs): outputs = model(trainX) optimizer.zero_grad() loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 1 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) # 预测结果 trainPredict = model(trainX) testPredict = model(testX) trainPredict = scaler.inverse_transform(trainPredict.detach().numpy()) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict.detach().numpy()) testY = scaler.inverse_transform([testY]) ```
阅读全文

相关推荐

将冒号后面的代码改写成一个nn.module类:import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, LSTM data1 = pd.read_csv("终极1.csv", usecols=[17], encoding='gb18030') df = data1.fillna(method='ffill') data = df.values.reshape(-1, 1) scaler = MinMaxScaler(feature_range=(0, 1)) data = scaler.fit_transform(data) train_size = int(len(data) * 0.8) test_size = len(data) - train_size train, test = data[0:train_size, :], data[train_size:len(data), :] def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) look_back = 30 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) model = Sequential() model.add(LSTM(50, input_shape=(1, look_back), return_sequences=True)) model.add(LSTM(50)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, epochs=6, batch_size=1, verbose=2) trainPredict = model.predict(trainX) testPredict = model.predict(testX) trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY])

import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom sklearn.preprocessing import MinMaxScalerfrom keras.models import Sequentialfrom keras.layers import Dense, LSTM# 读取数据dataset = pd.read_csv('wind_speed.csv', header=0, index_col=0)dataset.index = pd.to_datetime(dataset.index)dataset = dataset.resample('H').mean()# 数据预处理scaler = MinMaxScaler(feature_range=(0, 1))dataset_scaled = scaler.fit_transform(dataset)# 创建训练集和测试集train_size = int(len(dataset_scaled) * 0.8)test_size = len(dataset_scaled) - train_sizetrain, test = dataset_scaled[0:train_size, :], dataset_scaled[train_size:len(dataset_scaled), :]# 创建数据集def create_dataset(dataset, look_back): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY)look_back = 24trainX, trainY = create_dataset(train, look_back)testX, testY = create_dataset(test, look_back)# 调整数据维度trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))# 创建LSTM模型model = Sequential()model.add(LSTM(50, input_shape=(look_back, 1)))model.add(Dense(1))model.compile(loss='mean_squared_error', optimizer='adam')model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)# 预测数据trainPredict = model.predict(trainX)testPredict = model.predict(testX)# 反转数据缩放trainPredict = scaler.inverse_transform(trainPredict)trainY = scaler.inverse_transform([trainY])testPredict = scaler.inverse_transform(testPredict)testY = scaler.inverse_transform([testY])# 绘制预测结果plt.plot(trainY[0], label='Train Data')plt.plot(trainPredict[:,0], label='Predicted Train Data')plt.plot(testY[0], label='Test Data')plt.plot(testPredict[:,0], label='Predicted Test Data')plt.legend(loc='best')plt.show()

import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, SimpleRNN from keras import backend as K from keras.models import Model from sklearn.cluster import KMeans # 生成sin函数数据 x = np.arange(0, 2*np.pi, 0.1) y = np.sin(x) # 可视化sin函数 plt.plot(x, y) plt.show() # 准备数据 dataX, dataY = [], [] for i in range(len(y)-1): dataX.append(y[i:i+1]) dataY.append(y[i+1]) dataX = np.array(dataX) dataY = np.array(dataY) # 划分训练集和测试集 train_size = int(len(dataY) * 0.7) test_size = len(dataY) - train_size trainX, testX = np.array(dataX[0:train_size]), np.array(dataX[train_size:len(dataX)]) trainY, testY = np.array(dataY[0:train_size]), np.array(dataY[train_size:len(dataY)]) # 调整输入数据的形状 trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) # 定义模型结构 model = Sequential() model.add(SimpleRNN(units=10, input_shape=(1, 1))) model.add(Dense(units=1)) # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 history = model.fit(trainX, trainY, epochs=200, validation_data=(testX, testY)) # 可视化损失函数 plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper right') plt.show() #预测结果 trainPredict = model.predict(trainX) testPredict = model.predict(testX)可视化模型结构代码

import numpy as np import matplotlib.pyplot as plt # 生成sin函数数据 x = np.arange(0, 2*np.pi, 0.1) y = np.sin(x) # 可视化sin函数 plt.plot(x, y) plt.show() from keras.models import Sequential from keras.layers import Dense, SimpleRNN # 准备数据 dataX, dataY = [], [] for i in range(len(y)-1): dataX.append(y[i:i+1]) dataY.append(y[i+1]) dataX = np.array(dataX) dataY = np.array(dataY) # 划分训练集和测试集 train_size = int(len(dataY) * 0.7) test_size = len(dataY) - train_size trainX, testX = np.array(dataX[0:train_size]), np.array(dataX[train_size:len(dataX)]) trainY, testY = np.array(dataY[0:train_size]), np.array(dataY[train_size:len(dataY)]) # 调整输入数据的形状 trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) # 定义模型结构 model = Sequential() model.add(SimpleRNN(units=10, input_shape=(1, 1))) model.add(Dense(units=1)) # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 history = model.fit(trainX, trainY, epochs=100, validation_data=(testX, testY)) # 可视化损失函数 plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper right') plt.show() #预测结果 trainPredict = model.predict(trainX) testPredict = model.predict(testX) # 可视化预测结果 plt.plot(y) plt.plot(np.concatenate((trainPredict, testPredict))) plt.show()隐藏层可视化

import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, SimpleRNN from keras import backend as K from keras.models import Model from sklearn.cluster import KMeans # 生成sin函数数据 x = np.arange(0, 2*np.pi, 0.1) y = np.sin(x) # 可视化sin函数 plt.plot(x, y) plt.show() # 准备数据 dataX, dataY = [], [] for i in range(len(y)-1): dataX.append(y[i:i+1]) dataY.append(y[i+1]) dataX = np.array(dataX) dataY = np.array(dataY) # 划分训练集和测试集 train_size = int(len(dataY) * 0.7) test_size = len(dataY) - train_size trainX, testX = np.array(dataX[0:train_size]), np.array(dataX[train_size:len(dataX)]) trainY, testY = np.array(dataY[0:train_size]), np.array(dataY[train_size:len(dataY)]) # 调整输入数据的形状 trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) # 定义模型结构 model = Sequential() model.add(SimpleRNN(units=10, input_shape=(1, 1))) model.add(Dense(units=1)) # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 history = model.fit(trainX, trainY, epochs=200, validation_data=(testX, testY)) # 可视化损失函数 plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper right') plt.show() #预测结果 trainPredict = model.predict(trainX) testPredict = model.predict(testX)上述代码有哪些部分可以可视化

最新推荐

recommend-type

AI企联系统 Ai企业级系统开心版 uniapp适配 Web+H5+微信小程序+抖音小程序+双端APP

AI企联系统 Ai企业级系统开心版 uniapp适配 Web+H5+微信小程序+抖音小程序+双端APP 一款市面上新出的AI企联系统,项目uniapp开发的,支持3.5 4.0 Mj,此套系统5端适配,Web+H5+微信小程序+抖音小程序+双端APP,支持流量主! 自己有能力的可以二开,UI后台也可以自己改。
recommend-type

2000d.doc

2000d
recommend-type

通过SpringCloud实现微服务:Eureka+Ribbon+Feign+Zuul.zip

根据书籍《Java微服务架构实践》提供源码,通过SpringCloud实现微服务:Eureka+Ribbon+Feign+Zuul
recommend-type

基于CNN-BiLSTM-Adaboost的自行车租赁数量预测研究附Matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

前端协作项目:发布猜图游戏功能与待修复事项

资源摘要信息:"People-peephole-frontend是一个面向前端开发者的仓库,包含了一个由Rails和IOS团队在2015年夏季亚特兰大Iron Yard协作完成的项目。该仓库中的项目是一个具有特定功能的应用,允许用户通过iPhone或Web应用发布图像,并通过多项选择的方式让用户猜测图像是什么。该项目提供了一个互动性的平台,使用户能够通过猜测来获取分数,正确答案将提供积分,并防止用户对同一帖子重复提交答案。 当前项目存在一些待修复的错误,主要包括: 1. 答案提交功能存在问题,所有答案提交操作均返回布尔值true,表明可能存在逻辑错误或前端与后端的数据交互问题。 2. 猜测功能无法正常工作,这可能涉及到游戏逻辑、数据处理或是用户界面的交互问题。 3. 需要添加计分板功能,以展示用户的得分情况,增强游戏的激励机制。 4. 删除帖子功能存在损坏,需要修复以保证应用的正常运行。 5. 项目的样式过时,需要更新以反映跨所有平台的流程,提高用户体验。 技术栈和依赖项方面,该项目需要Node.js环境和npm包管理器进行依赖安装,因为项目中使用了大量Node软件包。此外,Bower也是一个重要的依赖项,需要通过bower install命令安装。Font-Awesome和Materialize是该项目用到的前端资源,它们提供了图标和界面组件,增强了项目的视觉效果和用户交互体验。 由于本仓库的主要内容是前端项目,因此JavaScript知识在其中扮演着重要角色。开发者需要掌握JavaScript的基础知识,以及可能涉及到的任何相关库或框架,比如用于开发Web应用的AngularJS、React.js或Vue.js。同时,对于iOS开发,可能还会涉及到Swift或Objective-C等编程语言,以及相应的开发工具Xcode。对于Rails,开发者则需要熟悉Ruby编程语言以及Rails框架的相关知识。 开发流程中可能会使用的其他工具包括: - Git:用于版本控制和代码管理。 - HTML/CSS:用于构建网页结构和样式。 - Webpack或Gulp:用于项目构建和优化流程。 - Babel:用于JavaScript代码的兼容性处理。 - Linting工具:如ESLint,用于代码质量检查和维护代码风格一致性。 总结来看,People-peephole-frontend项目不仅涉及到了跨平台协作的经验分享,还提供了前端开发的学习和实践机会,尤其在交互设计、前端工程化、依赖管理及样式设计等方面。开发者可以通过参与该项目的修复和完善工作,提高自身技能并积累宝贵的项目经验。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【高斯信道信号编码优化】:4大方法优化Chirp信号编码过程

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/d37646d14e4e4b51b01e617b59167c74.png) # 1. 高斯信道与Chirp信号编码基础 ## 简介 在现代通信领域,信息的传递无处不在,而保障信息传递的清晰与高效是通信技术的核心挑战之一。高斯信道作为通信系统中最常见和基础的模型,为我们理解和优化信号传输提供了重要的理论支持。Chirp信号,以其独特的频谱扩展特性,在无线通信、雷达和声纳系统中发挥着越来越重要的作用。本章将介绍高斯信道的特性以及Chirp信号的基础知识,为读者搭建起后续章节深入探讨优化方法的理论基础。
recommend-type

对给定图,实现图的深度优先遍历和广度优先遍历。以邻接表或邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列,并调试算法。使用C语言

在C语言中,我们可以使用邻接表或邻接矩阵来存储图的数据结构。这里我将简单介绍如何实现深度优先搜索(DFS)和广度优先搜索(BFS): **使用邻接表实现:** ```c #include <stdio.h> #include <stdlib.h> typedef struct Node { int val; struct Node* next; } Node; // 创建邻接列表表示图 Node* createAdjacencyList(int numNodes) { // 初始化节点数组 Node** adjList = malloc(sizeof(No
recommend-type

Spring框架REST服务开发实践指南

资源摘要信息: "在本教程中,我们将详细介绍如何使用Spring框架来构建RESTful Web服务,提供对Java开发人员的基础知识和学习参考。" 一、Spring框架基础知识 Spring是一个开源的Java/Java EE全功能栈(full-stack)应用程序框架和 inversion of control(IoC)容器。它主要分为以下几个核心模块: - 核心容器:包括Core、Beans、Context和Expression Language模块。 - 数据访问/集成:涵盖JDBC、ORM、OXM、JMS和Transaction模块。 - Web模块:提供构建Web应用程序的Spring MVC框架。 - AOP和Aspects:提供面向切面编程的实现,允许定义方法拦截器和切点来清晰地分离功能。 - 消息:提供对消息传递的支持。 - 测试:支持使用JUnit或TestNG对Spring组件进行测试。 二、构建RESTful Web服务 RESTful Web服务是一种使用HTTP和REST原则来设计网络服务的方法。Spring通过Spring MVC模块提供对RESTful服务的构建支持。以下是一些关键知识点: - 控制器(Controller):处理用户请求并返回响应的组件。 - REST控制器:特殊的控制器,用于创建RESTful服务,可以返回多种格式的数据(如JSON、XML等)。 - 资源(Resource):代表网络中的数据对象,可以通过URI寻址。 - @RestController注解:一个方便的注解,结合@Controller注解使用,将类标记为控制器,并自动将返回的响应体绑定到HTTP响应体中。 - @RequestMapping注解:用于映射Web请求到特定处理器的方法。 - HTTP动词(GET、POST、PUT、DELETE等):在RESTful服务中用于执行CRUD(创建、读取、更新、删除)操作。 三、使用Spring构建REST服务 构建REST服务需要对Spring框架有深入的理解,以及熟悉MVC设计模式和HTTP协议。以下是一些关键步骤: 1. 创建Spring Boot项目:使用Spring Initializr或相关构建工具(如Maven或Gradle)初始化项目。 2. 配置Spring MVC:在Spring Boot应用中通常不需要手动配置,但可以进行自定义。 3. 创建实体类和资源控制器:实体类映射数据库中的数据,资源控制器处理与实体相关的请求。 4. 使用Spring Data JPA或MyBatis进行数据持久化:JPA是一个Java持久化API,而MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 5. 应用切面编程(AOP):使用@Aspect注解定义切面,通过切点表达式实现方法的拦截。 6. 异常处理:使用@ControllerAdvice注解创建全局异常处理器。 7. 单元测试和集成测试:使用Spring Test模块进行控制器的测试。 四、学习参考 - 国际奥委会:可能是错误的提及,对于本教程没有相关性。 - AOP:面向切面编程,是Spring的核心功能之一。 - MVC:模型-视图-控制器设计模式,是构建Web应用的常见架构。 - 道:在这里可能指学习之道,或者是学习Spring的原则和最佳实践。 - JDBC:Java数据库连接,是Java EE的一部分,用于在Java代码中连接和操作数据库。 - Hibernate:一个对象关系映射(ORM)框架,简化了数据库访问代码。 - MyBatis:一个半自动化的ORM框架,它提供了更细致的SQL操作方式。 五、结束语 以上内容为《learnSpring:学习春天》的核心知识点,涵盖了从Spring框架的基础知识、RESTful Web服务的构建、使用Spring开发REST服务的方法,以及与学习Spring相关的技术栈介绍。对于想要深入学习Java开发,特别是RESTful服务开发的开发者来说,这是一份非常宝贵的资源。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依