使用R语言实现MNIST手写数字数据集识别
时间: 2023-12-03 14:02:37 浏览: 228
MNIST手写数字数据集是机器学习领域中常用的一个数据集,它包含了60000张28x28像素的训练图像和10000张测试图像,每张图像都代表了一个手写数字(0-9)。
使用R语言实现MNIST手写数字数据集识别,可以按照以下步骤进行:
1. 下载MNIST数据集
可以从官网下载MNIST数据集,也可以使用以下代码下载:
```R
install.packages("keras")
library(keras)
mnist <- dataset_mnist()
x_train <- mnist$train$x
y_train <- mnist$train$y
x_test <- mnist$test$x
y_test <- mnist$test$y
```
2. 数据预处理
将像素值从0-255归一化到0-1之间,并将标签转换为类似于one-hot编码的形式。
```R
x_train <- x_train / 255
x_test <- x_test / 255
n_classes <- 10
y_train <- keras::to_categorical(y_train, n_classes)
y_test <- keras::to_categorical(y_test, n_classes)
```
3. 搭建模型
使用深度学习框架Keras搭建模型,可以使用卷积神经网络(CNN)来进行图像分类。
```R
model <- keras_model_sequential()
model %>%
layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu", input_shape = c(28, 28, 1)) %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_flatten() %>%
layer_dense(units = 128, activation = "relu") %>%
layer_dropout(rate = 0.5) %>%
layer_dense(units = n_classes, activation = "softmax")
```
4. 编译模型
在编译模型时,需要指定损失函数、优化器和评价指标。
```R
model %>% compile(loss = "categorical_crossentropy", optimizer = "adam", metrics = c("accuracy"))
```
5. 训练模型
将训练数据输入模型进行训练,并指定训练的轮数和批次大小。
```R
history <- model %>% fit(x_train, y_train, epochs = 10, batch_size = 128, validation_split = 0.2)
```
6. 模型评估
使用测试数据对模型进行评估,并输出准确率。
```R
score <- model %>% evaluate(x_test, y_test, verbose = 0)
cat("Test accuracy:", score[2], "\n")
```
完整代码如下:
```R
library(keras)
mnist <- dataset_mnist()
x_train <- mnist$train$x
y_train <- mnist$train$y
x_test <- mnist$test$x
y_test <- mnist$test$y
x_train <- x_train / 255
x_test <- x_test / 255
n_classes <- 10
y_train <- keras::to_categorical(y_train, n_classes)
y_test <- keras::to_categorical(y_test, n_classes)
model <- keras_model_sequential()
model %>%
layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu", input_shape = c(28, 28, 1)) %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_flatten() %>%
layer_dense(units = 128, activation = "relu") %>%
layer_dropout(rate = 0.5) %>%
layer_dense(units = n_classes, activation = "softmax")
model %>% compile(loss = "categorical_crossentropy", optimizer = "adam", metrics = c("accuracy"))
history <- model %>% fit(x_train, y_train, epochs = 10, batch_size = 128, validation_split = 0.2)
score <- model %>% evaluate(x_test, y_test, verbose = 0)
cat("Test accuracy:", score[2], "\n")
```
运行以上代码即可在R中实现MNIST手写数字数据集识别。
阅读全文