使用R语言实现MNIST手写数字识别
时间: 2024-01-25 20:45:04 浏览: 130
MNIST手写数字识别是常见的机器学习任务之一。在R语言中,我们可以使用`keras`包来构建深度学习模型,实现MNIST手写数字识别。
首先,我们需要加载MNIST数据集:
```R
library(keras)
mnist <- dataset_mnist()
x_train <- mnist$train$x
y_train <- mnist$train$y
x_test <- mnist$test$x
y_test <- mnist$test$y
```
接下来,我们需要将输入的图像数据预处理成神经网络能够处理的形式,这里我们将每个像素点的灰度值缩放到0到1之间:
```R
x_train <- x_train / 255
x_test <- x_test / 255
```
接着,我们可以使用`keras`包中的函数来构建神经网络模型:
```R
model <- keras_model_sequential()
model %>%
layer_flatten(input_shape = c(28, 28)) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 10, activation = 'softmax')
summary(model)
```
这个模型包含一个输入层、一个全连接层、一个dropout层和一个输出层。
我们可以使用`compile()`函数来配置模型的优化器、损失函数和评估指标:
```R
model %>% compile(
optimizer = 'adam',
loss = 'sparse_categorical_crossentropy',
metrics = c('accuracy')
)
```
接下来,我们可以使用`fit()`函数来训练模型:
```R
history <- model %>% fit(
x_train, y_train,
epochs = 10,
batch_size = 32,
validation_split = 0.2
)
```
最后,我们可以使用`evaluate()`函数来评估模型在测试集上的表现:
```R
model %>% evaluate(x_test, y_test)
```
完整代码如下:
```R
library(keras)
mnist <- dataset_mnist()
x_train <- mnist$train$x
y_train <- mnist$train$y
x_test <- mnist$test$x
y_test <- mnist$test$y
x_train <- x_train / 255
x_test <- x_test / 255
model <- keras_model_sequential()
model %>%
layer_flatten(input_shape = c(28, 28)) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 10, activation = 'softmax')
summary(model)
model %>% compile(
optimizer = 'adam',
loss = 'sparse_categorical_crossentropy',
metrics = c('accuracy')
)
history <- model %>% fit(
x_train, y_train,
epochs = 10,
batch_size = 32,
validation_split = 0.2
)
model %>% evaluate(x_test, y_test)
```
阅读全文