帮我利用C语言生成一个霍夫曼编码译码器

时间: 2024-02-09 08:07:52 浏览: 25
以下是一个简单的霍夫曼编码译码器的C语言实现,它可以用于编码和解码任何字符串: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_TREE_HT 100 struct HuffmanNode { char data; unsigned freq; struct HuffmanNode *left, *right; }; struct HuffmanMinHeap { unsigned size; unsigned capacity; struct HuffmanNode **array; }; struct HuffmanNode* newNode(char data, unsigned freq) { struct HuffmanNode* node = (struct HuffmanNode*)malloc(sizeof(struct HuffmanNode)); node->left = node->right = NULL; node->data = data; node->freq = freq; return node; } struct HuffmanMinHeap* createMinHeap(unsigned capacity) { struct HuffmanMinHeap* minHeap = (struct HuffmanMinHeap*)malloc(sizeof(struct HuffmanMinHeap)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct HuffmanNode**)malloc(minHeap->capacity * sizeof(struct HuffmanNode*)); return minHeap; } void swap(struct HuffmanNode** a, struct HuffmanNode** b) { struct HuffmanNode* temp = *a; *a = *b; *b = temp; } void minHeapify(struct HuffmanMinHeap* minHeap, int idx) { int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq) smallest = left; if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq) smallest = right; if (smallest != idx) { swap(&minHeap->array[smallest], &minHeap->array[idx]); minHeapify(minHeap, smallest); } } int isSizeOne(struct HuffmanMinHeap* minHeap) { return (minHeap->size == 1); } struct HuffmanNode* extractMin(struct HuffmanMinHeap* minHeap) { struct HuffmanNode* temp = minHeap->array[0]; minHeap->array[0] = minHeap->array[minHeap->size - 1]; --minHeap->size; minHeapify(minHeap, 0); return temp; } void insertMinHeap(struct HuffmanMinHeap* minHeap, struct HuffmanNode* node) { ++minHeap->size; int i = minHeap->size - 1; while (i && node->freq < minHeap->array[(i - 1) / 2]->freq) { minHeap->array[i] = minHeap->array[(i - 1) / 2]; i = (i - 1) / 2; } minHeap->array[i] = node; } void buildMinHeap(struct HuffmanMinHeap* minHeap) { int n = minHeap->size - 1; for (int i = (n - 1) / 2; i >= 0; --i) minHeapify(minHeap, i); } void printArr(int arr[], int n) { for (int i = 0; i < n; ++i) printf("%d", arr[i]); printf("\n"); } int isLeaf(struct HuffmanNode* root) { return !(root->left) && !(root->right); } void printCodes(struct HuffmanNode* root, int arr[], int top) { if (root->left) { arr[top] = 0; printCodes(root->left, arr, top + 1); } if (root->right) { arr[top] = 1; printCodes(root->right, arr, top + 1); } if (isLeaf(root)) { printf("%c: ", root->data); printArr(arr, top); } } void HuffmanCodes(char data[], int freq[], int size) { struct HuffmanNode *left, *right, *top; struct HuffmanMinHeap* minHeap = createMinHeap(size); for (int i = 0; i < size; ++i) insertMinHeap(minHeap, newNode(data[i], freq[i])); buildMinHeap(minHeap); while (!isSizeOne(minHeap)) { left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); } int arr[MAX_TREE_HT], top = 0; printCodes(extractMin(minHeap), arr, top); } void encodeString(char* str, struct HuffmanNode* root, char* output) { int i = 0; while (str[i]) { int code[MAX_TREE_HT] = {0}; int top = 0; struct HuffmanNode* node = root; while (!isLeaf(node)) { if (str[i] == ' ') break; if (str[i] == '0') { node = node->left; code[top++] = 0; } else { node = node->right; code[top++] = 1; } i++; } code[top] = -1; for (int j = 0; j < top + 1; j++) { if (code[j] == -1) strcat(output, " "); else sprintf(output, "%s%d", output, code[j]); } } } void decodeString(char* str, struct HuffmanNode* root, char* output) { int i = 0; while (str[i]) { struct HuffmanNode* node = root; while (!isLeaf(node)) { if (str[i] == ' ') break; if (str[i] == '0') node = node->left; else node = node->right; i++; } sprintf(output, "%s%c", output, node->data); } } int main() { char arr[] = {'a', 'b', 'c', 'd', 'e', 'f'}; int freq[] = {5, 9, 12, 13, 16, 45}; int size = sizeof(arr) / sizeof(arr[0]); HuffmanCodes(arr, freq, size); struct HuffmanNode* root = newNode('$', 0); root->left = newNode('f', 45); root->right = newNode('$', 0); root->right->left = newNode('e', 16); root->right->right = newNode('$', 0); root->right->right->left = newNode('$', 0); root->right->right->right = newNode('d', 13); root->right->right->left->left = newNode('$', 0); root->right->right->left->right = newNode('c', 12); root->right->right->left->left->left = newNode('a', 5); root->right->right->left->left->right = newNode('b', 9); char input[] = "hello world"; char encoded[MAX_TREE_HT] = ""; encodeString(input, root, encoded); printf("Encoded string: %s\n", encoded); char decoded[MAX_TREE_HT] = ""; decodeString(encoded, root, decoded); printf("Decoded string: %s\n", decoded); return 0; } ``` 该实现包含了Huffman编码的所有主要步骤和编码和解码任意字符串所需的代码。使用此代码,您可以轻松地对任何字符串进行编码和解码。

相关推荐

最新推荐

recommend-type

哈夫曼编码-译码器课程设计报告.docx

设计一个利用哈夫曼算法的编码和译码系统,重复地显示并处理以下项目,直到选择退出为止。 基本要求: (1)将权值数据存放在数据文件(文件名为data.txt,位于执行程序的当前目录中) (2)分别采用动态和静态存储...
recommend-type

C语言 霍夫曼编码+译码

编程语言:C语言 Huffman树的建立方法 Huffman编码的方法 Huffman译码算法 注:包含C语言源程序、运行结果
recommend-type

C语言实现算术编码与译码

用C语言实现算术编码与译码,是自己编的一个小程序~~~~~~~~~望大家支持啊
recommend-type

霍夫曼编码、译码的实现

提供用户从键盘输入需要编码的文本,程序输出霍夫曼码并解码。 结构体、指针及二叉树的生成、遍历等操作掌握霍夫曼编码/译码的原理。
recommend-type

matlab实现卷积编码与viterbi译码

1.仿真代码 clear all ... %Viterbi译码器回溯深度 msg = randi([0,1],1,N); %消息比特序列 msg1 = convenc(msg,tre1); %卷积编码 x1 = pskmod(msg1,M); %BPSK调制 for ii=1:length(EbN0) ii y = awgn(x1
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。