卷积神经网络中tanh函数的优缺点
时间: 2024-06-03 09:13:10 浏览: 125
基于混合激活函数的改进卷积神经网络算法.pdf
卷积神经网络中的tanh函数是一种常见的激活函数,其优缺点如下:
优点:
1. 非线性变换。tanh函数具有非线性的特点,可以帮助模型处理非线性问题,提高模型的表达能力。
2. 输出值在[-1,1]之间。tanh函数的输出值在[-1,1]之间,可以将输出结果归一化,方便模型的训练和优化。
3. 相对于sigmoid函数,tanh函数具有对称的特点,可以在一定程度上减少梯度消失的问题。
缺点:
1. 容易出现梯度饱和问题。当输入的绝对值较大时,tanh函数的导数趋于0,容易出现梯度饱和的问题,导致模型难以收敛。
2. 计算代价较大。tanh函数的计算代价相比于ReLU等激活函数较大,不利于大规模的模型训练。
3. 输出值不是非负的。tanh函数的输出值不是非负的,可能不适用于需要非负输出的场景。
阅读全文