apriori算法python实现 csv文件
时间: 2023-10-05 07:14:58 浏览: 101
以下是apriori算法的Python实现,使用CSV文件作为输入数据:
```
import csv
def load_data(filename):
data = []
with open(filename, 'r') as csvfile:
csvreader = csv.reader(csvfile)
for row in csvreader:
data.append(row)
return data
def create_candidate_itemsets(data, k):
itemsets = set()
for transaction in data:
for i in range(len(transaction)):
itemset = frozenset([transaction[i]])
if itemset not in itemsets:
itemsets.add(itemset)
for j in range(i+1, len(transaction)):
itemset = frozenset([transaction[i], transaction[j]])
if itemset not in itemsets:
itemsets.add(itemset)
return itemsets
def support_count(itemset, data):
count = 0
for transaction in data:
if itemset.issubset(transaction):
count += 1
return count
def filter_candidate_itemsets(itemsets, data, min_support):
filtered_itemsets = set()
for itemset in itemsets:
support = support_count(itemset, data)
if support >= min_support:
filtered_itemsets.add(itemset)
return filtered_itemsets
def apriori(data, min_support):
itemsets = []
k = 1
candidate_itemsets = create_candidate_itemsets(data, k)
while candidate_itemsets:
filtered_itemsets = filter_candidate_itemsets(candidate_itemsets, data, min_support)
itemsets.append(filtered_itemsets)
k += 1
candidate_itemsets = create_candidate_itemsets(filtered_itemsets, k)
return itemsets
if __name__ == '__main__':
data = load_data('data.csv')
min_support = 2
itemsets = apriori(data, min_support)
print('Frequent itemsets:')
for i in range(len(itemsets)):
print('k =', i+1)
for itemset in itemsets[i]:
print(itemset)
```
在这个示例中,我们假设有一个名为“data.csv”的CSV文件,它包含一些交易,每个交易由多个项目组成,每个项目用逗号分隔。我们使用`load_data`函数加载数据,并将它们存储在一个二维列表中。然后,我们使用`apriori`函数来计算频繁项集。该函数使用一个叫做`min_support`的参数来指定最小支持度。我们还定义了几个辅助函数,例如`create_candidate_itemsets`来生成候选项集,`support_count`计算项集的支持度计数,`filter_candidate_itemsets`过滤掉不满足最小支持度要求的候选项集。最后,我们输出频繁项集。
阅读全文