sklearn的常用数据集以及它们的样本个数
时间: 2023-06-25 14:03:46 浏览: 198
sklearn中包含了许多常用的数据集,其中一些比较常用的数据集及其样本个数如下:
1. iris数据集:150个样本
2. digits数据集:1797个样本
3. wine数据集:178个样本
4. breast_cancer数据集:569个样本
5. diabetes数据集:442个样本
6. boston房价数据集:506个样本
这些数据集都是经典的机器学习数据集,可以用于训练和评估各种机器学习模型。使用sklearn加载这些数据集非常方便,可以通过sklearn.datasets模块中的load_*函数进行加载。
相关问题
sklearn中有哪些大样本数据集
### 回答1:
sklearn中包含了一些大型的数据集,例如:
1. MNIST:手写数字图像数据集,共有60000个训练样本和10000个测试样本。
2. CIFAR-10:包含60000个32x32像素的彩色图像,其中50000个用于训练,10000个用于测试,分为10个类别。
3. CIFAR-100:包含60000个32x32像素的彩色图像,其中50000个用于训练,10000个用于测试,分为100个类别。
4. 20 Newsgroups:包含来自20个不同新闻组的18000个文档。
5. Reuters-21578:包含21578个新闻文档,共计90个类别。
6. Internet Advertisements:包含3279个广告样本,共计1558个特征。
7. Labeled Faces in the Wild:包含13000个人脸图像,共计5749个人。
这些数据集都比较大,可以用来测试和评估机器学习模型的性能。
### 回答2:
在sklearn中,有一些被广泛使用的大样本数据集。以下是其中一些常见的大样本数据集:
1. MNIST手写数字数据集:MNIST是一个由手写数字图片组成的数据集,共有70000个样本,用于训练和测试数字识别算法。
2. CIFAR-10/CIFAR-100图像数据集:这是一组用于图像分类的数据集。CIFAR-10包含了60000个32x32彩色图像,共分为10个类别,每个类别有6000个样本;CIFAR-100则包含100个类别,每个类别有600个样本。
3. IMDB电影评论情感分类数据集:IMDB数据集包含了来自互联网电影数据库(IMDB)的25000个电影评论文本的情感标签。这个数据集用于情感分类任务,即判断评论是积极的还是消极的。
4. 20 Newsgroups新闻组数据集:这个数据集包含了来自20个不同主题的新闻组文章,共有18846个样本。用于文本分类任务,例如将文章按照主题分类。
5. Large Movie Review Dataset:这个数据集收集了来自IMDB的电影评论文本,包含了50000个样本。同样用于情感分类任务。
上述数据集都是比较大的,适用于训练和评估各种机器学习算法。它们在sklearn中的载入方式相对简单,可以方便地与其他库和算法进行集成和使用。当然,sklearn还提供了其他一些数据集,可以根据具体需求选择合适的数据集进行实验和研究。
### 回答3:
在scikit-learn(sklearn)库中,有以下几种大样本数据集可供使用:
1. 波士顿房价数据集(Boston Housing Dataset):该数据集包含了波士顿地区的房价及其他相关信息,共有506个样本,每个样本有13个特征。它被广泛用于回归问题的学习和性能评估。
2. digits数据集:这个数据集包含了一组手写数字的图像,共有1797个样本,每个样本是一个8x8像素的灰度图像。这个数据集常用于图像分类问题的学习和测试。
3. 20类新闻文本数据集(20 Newsgroups Dataset):这个数据集包含一组新闻组文档,共有18846个样本,每个样本由一篇文档组成,并分属于20个不同的类别。它常用于文本分类和自然语言处理任务的研究和实验。
4. MNIST数据集:这是一个手写数字图像数据集,共有70000个样本,每个样本是一个28x28像素的灰度图像。MNIST数据集被广泛用于机器学习算法在图像分类问题上的学习和性能评估。
除了上述几个常用的大样本数据集外,scikit-learn还提供了其他一些大型数据集,如Olivetti人脸数据集、California housing数据集等,这些数据集都可以帮助用户在机器学习任务中进行模型训练和性能评估。
python3实现knn的三个例子(包含数据集),水果分类,识别手写数字
### 回答1:
例子1:水果分类
在使用Python3实现KNN算法进行水果分类的例子中,我们首先需要一个数据集,其中包含不同水果的特征数据和对应的分类标签。假设我们有一个数据集包含了苹果、香蕉和橙子的特征数据,比如颜色、重量和大小等。
我们可以使用sklearn库中的datasets模块生成一个随机的水果数据集。然后,我们需要将数据集分为训练集和测试集,一般将训练集占数据集的70%-80%,测试集占20%-30%。
接下来,我们可以使用KNN算法来对水果进行分类。首先,我们需要计算测试集中每个水果与训练集中的每个水果的距离。常用的距离计算方法有欧式距离、曼哈顿距离等。
然后,我们可以根据距离的大小,选择离测试样本最近的k个训练样本,统计这k个样本中属于每个分类的数量。最后,我们可以选择数量最多的分类作为测试样本的分类。
最后,我们可以通过比较预测结果和真实标签,计算我们的准确率,来评估分类模型的性能。
例子2:手写数字识别
在使用Python3实现KNN算法进行手写数字识别的例子中,我们同样需要一个数据集,其中包含手写数字的特征数据和对应的分类标签。
我们可以使用scikit-learn库中的datasets模块生成一个手写数字数据集。然后,我们需要将数据集分为训练集和测试集。
接下来,我们同样需要计算测试集中每个手写数字与训练集中的每个手写数字的距离。我们可以使用欧式距离或曼哈顿距离等距离计算方法。
然后,我们选择离测试样本最近的k个训练样本,统计这k个样本中属于每个数字的数量。最后,我们选择数量最多的数字作为测试样本的分类。
最后,我们可以通过比较预测结果和真实标签,计算准确率,来评估分类模型的性能。
例子3:自定义数据集的分类
除了上述的例子,我们还可以自定义数据集进行分类。假设我们有一个数据集,其中包含学生的特征数据和对应的分类标签,比如学生的成绩、出勤率等特征。
我们可以同样使用KNN算法对这个数据集进行分类。首先,我们需要将数据集分为训练集和测试集。
然后,我们同样需要计算测试集中每个样本与训练集中的每个样本的距离。然后,选择离测试样本最近的k个训练样本,统计这k个样本中属于每个分类的数量。最后,选择数量最多的分类作为测试样本的分类。
最后,我们可以通过比较预测结果和真实标签,计算准确率,来评估模型的性能。
以上是三个在Python3中实现KNN算法的例子,涵盖了水果分类、手写数字识别以及自定义数据集的分类。
### 回答2:
1. 水果分类例子:
在Python3中使用KNN算法实现水果分类是一种常见的机器学习应用。我们可以使用一个包含水果特征和标签的数据集来训练模型,并根据新的水果特征来预测它们的类别。以下是一个示例数据集和实现代码:
数据集:
特征:水果重量(克)、水果颜色(红、绿、黄)
标签:水果类别(苹果、橙子、香蕉)
代码:
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
# 创建训练数据集
X_train = np.array([[150, 1], [200, 2], [100, 3], [250, 2]])
y_train = np.array(['苹果', '橙子', '苹果', '香蕉'])
# 创建测试数据
X_test = np.array([[220, 1], [160, 2]])
# 创建KNN分类器
knn = KNeighborsClassifier(n_neighbors=3)
# 训练模型
knn.fit(X_train, y_train)
# 预测结果
predictions = knn.predict(X_test)
print(predictions) # 输出预测结果
2. 识别手写数字例子:
识别手写数字是机器学习中经典的问题之一,我们可以使用Python3中的KNN算法来实现该任务。以下是一个示例数据集和实现代码:
数据集:
特征:每个数字被表示为一个8x8像素的图像,每个像素有一个灰度值(0-16)
标签:对应的数字(0-9)
代码:
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_digits
# 加载手写数字数据集
digits = load_digits()
# 创建训练数据集
X_train = digits.data[:1500]
y_train = digits.target[:1500]
# 创建测试数据集
X_test = digits.data[1500:]
y_test = digits.target[1500:]
# 创建KNN分类器
knn = KNeighborsClassifier(n_neighbors=3)
# 训练模型
knn.fit(X_train, y_train)
# 预测结果
predictions = knn.predict(X_test)
print(predictions) # 输出预测结果
3. 其他例子:
除了水果分类和手写数字识别,Python3中的KNN算法还可以应用于许多其他领域,例如图像分类、垃圾邮件过滤、电影推荐等。具体的数据集和实现代码会根据不同的应用场景而有所不同。不过,KNN算法的核心思想和实现步骤是相似的,只需要根据具体的数据集和目标任务进行适当的调整。
阅读全文