numpy转换tensor
时间: 2023-11-15 13:58:12 浏览: 92
可以使用torch.tensor()或者torch.from_numpy()函数将numpy数组转换为torch中的tensor数据类型。下面是一个例子:
import numpy as np
import torch
arr = np.array([1, 2, 3])
tensor = torch.tensor(arr)
print(tensor)
输出结果为:
tensor([1, 2, 3])
需要注意的是,torch.tensor()会创建一个新的tensor,而torch.from_numpy()则是将numpy数组转换为tensor并且共享内存空间,修改其中一个也会影响到另一个。
相关问题
numpy变成tensor
要将NumPy数组转换为PyTorch张量(Tensor),可以使用`torch.from_numpy()`函数。以下是一个示例:
```python
import numpy as np
import torch
# 创建一个NumPy数组
arr = np.array([1, 2, 3, 4, 5])
# 将NumPy数组转换为PyTorch张量
tensor = torch.from_numpy(arr)
print(tensor)
```
输出:
```
tensor([1, 2, 3, 4, 5])
```
通过`torch.from_numpy()`函数,我们可以将NumPy数组转换为PyTorch张量,并且它们共享相同的内存,所以对张量的修改也会影响到原始的NumPy数组。
numpy转tensor
要将NumPy数组转换为Tensor,可以使用`torch.from_numpy()`函数。该函数将NumPy数组转换为Tensor对象。
示例代码:
```python
import numpy as np
import torch
# 创建一个NumPy数组
arr = np.array([[1, 2], [3, 4]])
# 将NumPy数组转换为Tensor对象
tensor = torch.from_numpy(arr)
print(tensor)
```
输出:
```
tensor([[1, 2],
[3, 4]], dtype=torch.int32)
```
要将Tensor对象转换回NumPy数组,可以使用`numpy()`方法。
示例代码:
```python
# 将Tensor对象转换为NumPy数组
arr = tensor.numpy()
print(arr)
```
输出:
```
array([[1, 2],
[3, 4]])
```
阅读全文