kruskal算法java代码
时间: 2023-10-11 12:13:27 浏览: 98
Kruskal算法代码
以下是Kruskal算法的Java代码示例:
```
import java.util.*;
class Edge implements Comparable<Edge>
{
int src, dest, weight;
public int compareTo(Edge compareEdge)
{
return this.weight-compareEdge.weight;
}
};
class Subset
{
int parent, rank;
};
public class KruskalAlgorithm
{
int V, E;
Edge edge[];
KruskalAlgorithm(int v, int e)
{
V = v;
E = e;
edge = new Edge[E];
for (int i=0; i<e; ++i)
edge[i] = new Edge();
}
int find(Subset subsets[], int i)
{
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;
}
void Union(Subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
void KruskalMST()
{
Edge result[] = new Edge[V];
int e = 0;
int i = 0;
for (i=0; i<V; ++i)
result[i] = new Edge();
Arrays.sort(edge);
Subset subsets[] = new Subset[V];
for(i=0; i<V; ++i)
subsets[i]=new Subset();
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}
i = 0;
while (e < V - 1)
{
Edge next_edge = new Edge();
next_edge = edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
if (x != y)
{
result[e++] = next_edge;
Union(subsets, x, y);
}
}
System.out.println("Following are the edges in " +
"the constructed MST");
int minimumCost = 0;
for (i = 0; i < e; ++i)
{
System.out.println(result[i].src+" -- " +
result[i].dest+" == " + result[i].weight);
minimumCost += result[i].weight;
}
System.out.println("Minimum Cost Spanning Tree "+
minimumCost);
}
public static void main(String[] args)
{
int V = 4;
int E = 5;
KruskalAlgorithm graph = new KruskalAlgorithm(V, E);
// add edge 0-1
graph.edge[0].src = 0;
graph.edge[0].dest = 1;
graph.edge[0].weight = 10;
// add edge 0-2
graph.edge[1].src = 0;
graph.edge[1].dest = 2;
graph.edge[1].weight = 6;
// add edge 0-3
graph.edge[2].src = 0;
graph.edge[2].dest = 3;
graph.edge[2].weight = 5;
// add edge 1-3
graph.edge[3].src = 1;
graph.edge[3].dest = 3;
graph.edge[3].weight = 15;
// add edge 2-3
graph.edge[4].src = 2;
graph.edge[4].dest = 3;
graph.edge[4].weight = 4;
graph.KruskalMST();
}
}
```
此代码演示了Kruskal最小生成树算法的实现方式。
阅读全文