p*=i; ans+=p; if(ans>=25)
时间: 2024-05-29 17:14:49 浏览: 154
It seems like a code snippet in which the value of `p` is multiplied by `i` and stored back in `p`. Then, the value of `p` is assigned to `ans`. Finally, if the value of `ans` is greater than or equal to 25, some action is taken (which is not specified in the given code snippet).
Without more context or information, it is difficult to determine the purpose or functionality of this code.
相关问题
#include<iostream> using namespace std; string s; int ans,p[2000005],last=1000000; int main() { cin>>s; for(int i=1;i<=s.length();i++){ if(s[i-1]=='+')last++; else last--; if(p[last]==0)p[last]=i; else ans=max(ans,i-p[last]); if(last==1000000)ans=i; } cout<<ans<<endl; }
这是一段 C++ 代码,功能是计算一个字符串中连续加减号的最长长度。
转换成 Python 代码如下:
```python
s = input()
ans = 0
p = [0] * 2000005
last = 1000000
for i in range(1, len(s) + 1):
if s[i - 1] == '+':
last += 1
else:
last -= 1
if p[last] == 0:
p[last] = i
else:
ans = max(ans, i - p[last])
if last == 1000000:
ans = i
print(ans)
```
注意,Python 中没有 `using namespace std;` 这个语法,而且 Python 中的列表索引从 0 开始,需要稍作修改。
请将下面这段代码翻译为python语言#include<stdio.h> #include<math.h> int fact(int N) { int ans=1; if(N==0){ } else{ for(int i=1;i<=N;i++) { ans*=i; } } return ans; } int DP(int a,int b) { int ans; return ans=fact(a)/fact(a-b); } int main() { int n; scanf("%d",&n); for(int N=2;N<=n;N++){ int P[N],F[N]; int sum=0,summ=0; double m[N]; double fenmusum=0; for(int i=1;i<=N;i++) { F[i]=0; P[i]=DP(N,i); for(int k=0;k<=i;k++) { F[i]+=DP(i,k); } sum+=P[i]*(F[i]-1); } for(int i=1;i<=N;i++) { m[i]=(double)(F[i]-1)/(double)sum; } for(int i=1;i<=N;i++) { fenmusum+=(double)pow((double)(F[i]-1),m[i])*(double)P[i]; } double ans=log(sum)/log(fenmusum); printf("|A|=%d D=%f\n",N,ans); } }
```python
import math
def fact(N):
ans = 1
if N == 0:
pass
else:
for i in range(1, N+1):
ans *= i
return ans
def DP(a, b):
ans = fact(a) // fact(a-b)
return ans
if __name__ == '__main__':
n = int(input())
for N in range(2, n+1):
P, F = [0] * N, [0] * N
sum, summ = 0, 0
m = [0] * N
fenmusum = 0
for i in range(1, N+1):
F[i] = 0
P[i] = DP(N, i)
for k in range(i+1):
F[i] += DP(i, k)
sum += P[i] * (F[i] - 1)
for i in range(1, N+1):
m[i] = (F[i] - 1) / sum
for i in range(1, N+1):
fenmusum += pow((F[i] - 1), m[i]) * P[i]
ans = math.log(sum) / math.log(fenmusum)
print("|A|=%d D=%f" % (N, ans))
```
阅读全文