sem_post(&full);

时间: 2024-05-25 08:14:14 浏览: 28
`sem_post(&full)` 是一个函数调用,用于增加一个命名信号量 `full` 的值。在 POSIX 线程中,信号量是一种用于线程同步的基本机制。它可以用于控制并发访问共享资源,如内存或文件。在这里,`sem_post()` 函数用于通知其他线程,即生产者线程,有一个缓冲区空间现在可以被使用了。这个信号量 `full` 的值被初始化为 0,所以每次调用 `sem_post()` 函数后,它的值会增加 1。如果此时有其他线程正在等待该信号量,则它们将被唤醒,继续执行。
相关问题

#include <stdio.h> #include <pthread.h> #include <semaphore.h> #include <stdlib.h> #include <string.h> #define BUFFER_SIZE 200 char* buffer;//缓冲区 sem_t empty_sem;//空缓冲区信号量 sem_t full_sem;//满缓冲区信号量 pthread_mutex_t mutex;//互斥信号量 void *producer(void *arg) { // 等待空缓冲区 sem_wait(&empty_sem); pthread_mutex_lock(&mutex); // 将产品放入缓冲区 printf("input sonething to buffer:"); fgets(buffer,BUFFER_SIZE,stdin); pthread_mutex_unlock(&mutex); sem_post(&full_sem); pthread_exit(NULL); } void *consumer(void *arg) { // 等待满缓冲区 sem_wait(&full_sem); pthread_mutex_lock(&mutex); // 从缓冲区取出产品 printf("read product from buffer:%s", buffer); memset(buffer,0,BUFFER_SIZE); pthread_mutex_unlock(&mutex); sem_post(&empty_sem); pthread_exit(NULL); } int main(){ pthread_t tid1,tid2; buffer=(char*)malloc(BUFFER_SIZE); //初始化信号量和互斥信号量 sem_init(&empty_sem,0,BUFFER_SIZE);//初始化empty_sem的值为BUFFER_SIZE sem_init(&full_sem,0,0); pthread_mutex_init(&mutex,NULL); //创建生产者和消费者线程 pthread_create(&tid1,NULL,producer,NULL); pthread_create(&tid2,NULL,consumer,NULL); //等待线程结束 pthread_join(tid1,NULL); pthread_join(tid2,NULL); //销毁信号量和互斥信号量 sem_destroy(&empty_sem); sem_destroy(&full_sem); pthread_mutex_destroy(&mutex); printf("The End!\n"); return 0; }

这是一个生产者-消费者问题的代码实现,其中使用互斥量和信号量来实现线程同步和互斥。生产者线程等待空缓冲区信号量,然后获取互斥信号量,将产品放入缓冲区,释放互斥信号量,然后发出满缓冲区信号量。消费者线程等待满缓冲区信号量,然后获取互斥信号量,从缓冲区取出产品,释放互斥信号量,然后发出空缓冲区信号量。主函数中创建生产者和消费者线程,并等待它们结束。在程序结束时,销毁互斥量和信号量。

#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <pthread.h> #include <semaphore.h> #define SIZE 10 int in=0; int out=0; int buffer[SIZE]; sem_t empty; sem_t full; pthread_mutex_t mutex; void *Producer() { int nextp=0; int i=0; for(; i <10; ++i) { int time = rand() % 10 + 1; usleep(time*100000); sem_wait(&empty); pthread_mutex_lock(&mutex); nextp = nextp + 1; buffer[in] = nextp; printf("Produce one message:%d\n", nextp); fflush(stdout);//printf后请一定调用这句刷新输出缓存 in = (in + 1) % SIZE; pthread_mutex_unlock(&mutex); //互斥锁解锁 sem_post(&full); } } void *Consumer() { //请补充消费者线程函数代码 int i=0; for(i=0;i<10;++i) { int time=rand()%10+1; usleep(time*100000); sem_wait(&full); pthread_mutex_lock(&mutex); int nextc=buffer[out]; out=(out+1)%SIZE; printf("Consume one message:%d\n",nextc); fflush(stdout); pthread_mutex_unlock(&mutex); sem_post(&empty); } } int main() { sem_init(&empty, 0, 10); //信号量初始化(最多容纳10条消息,容纳了10条生产者将不会生产消息) sem_init(&full, 0, 0); pthread_mutex_init(&mutex, NULL); //互斥锁初始化 pthread_t producid; pthread_t consumid; pthread_create(&producid, NULL, Producer, NULL); //创建生产者线程 pthread_create(&consumid, NULL, Consumer, NULL); //创建消费者线程 pthread_join(producid, NULL); pthread_join(consumid, NULL); sem_destroy(&empty); //信号量的销毁 sem_destroy(&full); pthread_mutex_destroy(&mutex); //互斥锁的销毁 return 0; }

这段代码实现了一个生产者-消费者模型,使用了信号量和互斥锁实现线程之间的同步和互斥。 在main函数中,我们创建了两个线程,一个是生产者线程,一个是消费者线程。生产者线程的作用是产生消息,并存储到一个大小为10的缓冲区中;消费者线程的作用是消费消息,并从缓冲区中取出消息进行处理。缓冲区使用了一个循环队列实现。 在生产者线程函数Producer和消费者线程函数Consumer中,我们使用了信号量和互斥锁来实现线程之间的同步和互斥。 empty和full是两个信号量,用来表示缓冲区中空槽位和已存储的消息数量。在Producer中,当缓冲区中空槽位数量为0时,生产者线程会阻塞等待;否则生产者线程会获取一个空槽位,产生一条消息并存储到缓冲区中,然后释放full信号量,表示缓冲区中已存储的消息数量增加了1。 在Consumer中,当缓冲区中已存储的消息数量为0时,消费者线程会阻塞等待;否则消费者线程会获取一条消息,进行处理,并释放empty信号量,表示缓冲区中空槽位数量增加了1。 在两个函数中,我们使用了互斥锁mutex来保护缓冲区的访问。在Producer中,当生产者线程获取一个空槽位时,它需要获取互斥锁mutex;在Consumer中,当消费者线程获取一条消息时,它也需要获取互斥锁mutex。这样可以保证生产者和消费者线程不会同时访问缓冲区,从而避免竞争条件的发生。 最后在main函数的末尾,我们调用了sem_destroy和pthread_mutex_destroy函数,释放了信号量和互斥锁的资源。

相关推荐

#include <stdio.h> #include <stdlib.h> #include #include <semaphore.h> #include <unistd.h> #define BUFFER_SIZE 10 int buffer[BUFFER_SIZE]; int in = 0, out = 0; sem_t empty, full; pthread_mutex_t mutex;void *producer(void *arg) { int item = 0; while (1) { // 生产产品 item += 1; // 等待缓冲区不满 sem_wait(&empty); // 获取互斥锁 pthread_mutex_lock(&mutex); // 将产品放入缓冲区 buffer[in] = item; printf("生产者生产产品 %d,缓冲区大小为 %d\n", item, (in - out + BUFFER_SIZE) % BUFFER_SIZE); in = (in + 1) % BUFFER_SIZE; // 释放互斥锁 pthread_mutex_unlock(&mutex); // 发送缓冲区不空信号 sem_post(&full); // 模拟生产耗时 sleep(1); } } void *consumer(void *arg) { int item = 0; while (1) { // 等待缓冲区不空 sem_wait(&full); // 获取互斥锁 pthread_mutex_lock(&mutex); // 从缓冲区取出产品 item = buffer[out]; printf("消费者消费产品 %d,缓冲区大小为 %d\n", item, (in - out - 1 + BUFFER_SIZE) % BUFFER_SIZE); out = (out + 1) % BUFFER_SIZE; // 释放互斥锁 pthread_mutex_unlock(&mutex); // 发送缓冲区不满信号 sem_post(&empty); // 模拟消费耗时 sleep(2); } } int main() { // 初始化信号量和互斥锁 sem_init(&empty, 0, BUFFER_SIZE); sem_init(&full, 0, 0); pthread_mutex_init(&mutex, NULL); // 创建生产者和消费者线程 pthread_t producer_thread, consumer_thread; pthread_create(&producer_thread, NULL, producer, NULL); pthread_create(&consumer_thread, NULL, consumer, NULL); // 等待线程结束 pthread_join(producer_thread, NULL); pthread_join(consumer_thread, NULL); // 销毁信号量和互斥锁 sem_destroy(&empty); sem_destroy(&full); pthread_mutex_destroy(&mutex); return 0;}此段代码无法运行,情修改

#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include #include <semaphore.h> #define MAXSIZE 5 //缓冲区大小 int stack[MAXSIZE]={0}; //缓冲区数组 int front=0,rear=0; //缓冲区队列头尾指针 int size=10; //生产和消费的产品数量 sem_t avail; //可用缓冲区信号量 sem_t full; //存放产品的缓冲区信号量 //生产者 void provider_fun(void) { int i=1; while(i<=size) { sem_wait(&avail); //avail信号量P操作,表示将可用的空缓冲区个数减1 stack[rear]=i; printf("produce the %d product\n",stack[rear]); rear=(rear+1)%MAXSIZE; i++; sleep(1); sem_post(&full); //full信号量V操作,表示将存放产品的缓冲区个数加1 } pthread_exit(NULL); } //消费者 void customer_fun(void) { int i=1; while(i<=size) { sem_wait(&full); //fulll信号量P操作,表示将存放产品的缓冲区个数减1 front=(front+1)%MAXSIZE; printf("\t consume the %d product\n",stack[front]); stack[front]=0; sleep(2); sem_post(&avail); //avail信号量V操作,表示将可用的空缓冲区个数加1 i++; } pthread_exit(NULL); } void main() { pthread_t provider,customer; //定义生产者线程对象和消费者线程对象 sem_init(&avail, 0, MAXSIZE); //将 avail 信号量初始化为 MAXSIZE sem_init(&full, 0, 0); //将 full 信号量初始化为 0 pthread_create(&provider,NULL,(void *)provider_fun,NULL); //创建生产者线程 pthread_create(&customer,NULL,(void *)customer_fun,NULL); //消费者线程 pthread_join(provider,NULL); pthread_join(customer,NULL); sem_destroy(&avail); sem_destroy(&full); }写出退出程序的线程源代码。

最新推荐

recommend-type

SecondactivityMainActivity.java

SecondactivityMainActivity.java
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到
recommend-type

BSC绩效考核指标汇总 (3).pdf

BSC(Balanced Scorecard,平衡计分卡)是一种企业绩效管理系统,它将公司的战略目标分解为四个维度:财务、客户、内部流程和学习与成长。在这个文档中,我们看到的是针对特定行业(可能是保险或保险经纪)的BSC绩效考核指标汇总,专注于财务类和非财务类的关键绩效指标(KPIs)。 财务类指标: 1. 部门费用预算达成率:衡量实际支出与计划费用之间的对比,通过公式 (实际部门费用/计划费用)*100% 来计算,数据来源于部门的预算和实际支出记录。 2. 项目研究开发费用预算达成率:同样用于评估研发项目的资金管理,公式为 (实际项目研究开发费用/计划费用)*100%。 3. 课题费用预算达成率、招聘费用预算达成率、培训费用预算达成率 和 新产品研究开发费用预算达成率:这些都是人力资源相关开支的预算执行情况,涉及到费用的实际花费与计划金额的比例。 4. 承保利润:衡量保险公司盈利能力的重要指标,包括赔付率和寿险各险种的死差损益(实际死亡率与预期死亡率的差异)。 5. 赔付率:反映保险公司的赔付情况,是业务健康度的一个关键指标。 6. 内嵌价值的增加:代表了保单的价值增长,反映了公司长期盈利能力。 7. 人力成本总额控制率:通过比较实际人力成本与计划成本来评估人力成本的有效管理。 8. 标准保费达成率:衡量公司的销售业绩,即实际收取保费与目标保费的比率。 9. 其他费用比率,如附加佣金、续期推动费用、业务推动费用等,用来评估营销费用的效率。 非财务类指标: 1. 销售目标达成率:衡量销售团队完成预定目标的程度,通过实际销售额与计划销售额的比率计算。 2. 理赔率:体现客户服务质量和效率,涉及保险公司处理理赔请求的速度和成功率。 3. 产品/服务销售收入达成率:衡量产品或服务的实际销售效果,反映市场响应和客户满意度。 这些指标集合在一起,提供了全面的视角来评估公司的经营效率、财务表现以及战略执行情况。通过定期跟踪和分析这些数据,企业可以持续优化策略,提升业绩,确保与整体战略目标的一致性。每个指标的数据来源通常来自于相关部门的预算和实际操作记录,确保信息的准确性。