pytorch迁移学习原理方法及pytorch代码举例实现并说明
时间: 2023-08-01 15:08:10 浏览: 140
基于 pytorch实现图像风格迁移示例 完整代码+数据 可直接运行
5星 · 资源好评率100%
迁移学习是指在一个任务(源任务)上训练好的模型,在另一个任务(目标任务)上进行微调,以提高目标任务的性能。PyTorch提供了一些预训练好的模型,如VGG、ResNet、AlexNet等,这些模型经过了大规模的图像数据集训练,可以提取出图像的特征。在进行迁移学习时,我们可以使用这些预训练好的模型,将其作为特征提取器,然后在其后面添加几层自定义的全连接层,以适应目标任务。
下面是一个使用预训练的ResNet模型进行迁移学习的示例代码:
```
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# 加载预训练的ResNet模型
resnet = models.resnet18(pretrained=True)
# 冻结模型的所有参数
for param in resnet.parameters():
param.requires_grad = False
# 替换最后一层全连接层
resnet.fc = nn.Linear(resnet.fc.in_features, 10)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(resnet.fc.parameters(), lr=0.001, momentum=0.9)
# 加载数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor())
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
# 训练模型
resnet.train()
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = resnet(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
# 测试模型
resnet.eval()
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = resnet(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
```
在上面的代码中,我们首先加载了预训练的ResNet模型,并将其冻结,然后替换了其最后一层全连接层。接着定义了损失函数和优化器,并加载了CIFAR10数据集。在训练模型时,我们只训练了最后一层全连接层,而不对整个模型进行微调。最后,我们测试了模型的准确率。
需要注意的是,由于我们只训练了最后一层全连接层,所以在训练时只需要对其进行反向传播和优化,而不需要对整个模型进行反向传播和优化。这可以通过将优化器的参数设置为`resnet.fc.parameters()`来实现。
阅读全文