x1,y1 = pygame.mouse.get_pos()

时间: 2024-03-04 15:48:04 浏览: 166
这行代码的作用是获取当前鼠标的位置,即返回一个包含鼠标当前位置的元组 (x, y)。具体来说,pygame.mouse.get_pos() 函数会返回鼠标在窗口中的坐标位置,其中 x 和 y 分别表示鼠标在窗口中的水平和垂直位置。通常情况下,我们可以将这个函数放在游戏循环中,每帧都获取一次鼠标位置,从而实现对鼠标位置的监测和响应。例如,如果我们希望在鼠标移动的时候,将游戏角色的位置设置为鼠标位置,可以在游戏循环中加入类似如下的代码: ```python x1, y1 = pygame.mouse.get_pos() # 设置游戏角色的位置为鼠标位置 character.rect.x = x1 character.rect.y = y1 ``` 这样,当鼠标移动时,游戏角色的位置就会随之改变。
相关问题

pygame写一个A*算法

好的,下面是一个简单的用 Pygame 实现 A* 算法的示例代码: ```python import pygame import math from queue import PriorityQueue WIDTH = 800 WIN = pygame.display.set_mode((WIDTH, WIDTH)) pygame.display.set_caption("A* Path Finding Algorithm") RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) YELLOW = (255, 255, 0) WHITE = (255, 255, 255) BLACK = (0, 0, 0) PURPLE = (128, 0, 128) ORANGE = (255, 165, 0) GREY = (128, 128, 128) TURQUOISE = (64, 224, 208) class Node: def __init__(self, row, col, width, total_rows): self.row = row self.col = col self.x = row * width self.y = col * width self.color = WHITE self.neighbors = [] self.width = width self.total_rows = total_rows def get_pos(self): return self.row, self.col def is_closed(self): return self.color == RED def is_open(self): return self.color == GREEN def is_barrier(self): return self.color == BLACK def is_start(self): return self.color == ORANGE def is_end(self): return self.color == TURQUOISE def reset(self): self.color = WHITE def make_start(self): self.color = ORANGE def make_closed(self): self.color = RED def make_open(self): self.color = GREEN def make_barrier(self): self.color = BLACK def make_end(self): self.color = TURQUOISE def make_path(self): self.color = PURPLE def draw(self, win): pygame.draw.rect(win, self.color, (self.x, self.y, self.width, self.width)) def update_neighbors(self, grid): self.neighbors = [] if self.row < self.total_rows - 1 and not grid[self.row + 1][self.col].is_barrier(): # DOWN self.neighbors.append(grid[self.row + 1][self.col]) if self.row > 0 and not grid[self.row - 1][self.col].is_barrier(): # UP self.neighbors.append(grid[self.row - 1][self.col]) if self.col < self.total_rows - 1 and not grid[self.row][self.col + 1].is_barrier(): # RIGHT self.neighbors.append(grid[self.row][self.col + 1]) if self.col > 0 and not grid[self.row][self.col - 1].is_barrier(): # LEFT self.neighbors.append(grid[self.row][self.col - 1]) def __lt__(self, other): return False def h(p1, p2): x1, y1 = p1 x2, y2 = p2 return abs(x1 - x2) + abs(y1 - y2) def reconstruct_path(came_from, current, draw): while current in came_from: current = came_from[current] current.make_path() draw() def algorithm(draw, grid, start, end): count = 0 open_set = PriorityQueue() open_set.put((0, count, start)) came_from = {} g_score = {node: float("inf") for row in grid for node in row} g_score[start] = 0 f_score = {node: float("inf") for row in grid for node in row} f_score[start] = h(start.get_pos(), end.get_pos()) open_set_hash = {start} while not open_set.empty(): for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() current = open_set.get()[2] open_set_hash.remove(current) if current == end: reconstruct_path(came_from, end, draw) end.make_end() return True for neighbor in current.neighbors: temp_g_score = g_score[current] + 1 if temp_g_score < g_score[neighbor]: came_from[neighbor] = current g_score[neighbor] = temp_g_score f_score[neighbor] = temp_g_score + h(neighbor.get_pos(), end.get_pos()) if neighbor not in open_set_hash: count += 1 open_set.put((f_score[neighbor], count, neighbor)) open_set_hash.add(neighbor) neighbor.make_open() draw() if current != start: current.make_closed() return False def make_grid(rows, width): grid = [] gap = width // rows for i in range(rows): grid.append([]) for j in range(rows): node = Node(i, j, gap, rows) grid[i].append(node) return grid def draw_grid(win, rows, width): gap = width // rows for i in range(rows): pygame.draw.line(win, GREY, (0, i * gap), (width, i * gap)) for j in range(rows): pygame.draw.line(win, GREY, (j * gap, 0), (j * gap, width)) def draw(win, grid, rows, width): win.fill(WHITE) for row in grid: for node in row: node.draw(win) draw_grid(win, rows, width) pygame.display.update() def get_clicked_pos(pos, rows, width): gap = width // rows y, x = pos row = y // gap col = x // gap return row, col def main(win, width): ROWS = 50 grid = make_grid(ROWS, width) start = None end = None run = True started = False while run: draw(win, grid, ROWS, width) for event in pygame.event.get(): if event.type == pygame.QUIT: run = False if started: continue if pygame.mouse.get_pressed()[0]: # LEFT pos = pygame.mouse.get_pos() row, col = get_clicked_pos(pos, ROWS, width) node = grid[row][col] if not start and node != end: start = node start.make_start() elif not end and node != start: end = node end.make_end() elif node != end and node != start: node.make_barrier() elif pygame.mouse.get_pressed()[2]: # RIGHT pos = pygame.mouse.get_pos() row, col = get_clicked_pos(pos, ROWS, width) node = grid[row][col] node.reset() if node == start: start = None elif node == end: end = None if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE and not started: for row in grid: for node in row: node.update_neighbors(grid) algorithm(lambda: draw(win, grid, ROWS, width), grid, start, end) if event.key == pygame.K_c: start = None end = None grid = make_grid(ROWS, width) pygame.quit() main(WIN, WIDTH) ``` 这个示例代码实现了一个可视化的 A* 算法,可以通过左键点击来添加起点、终点和障碍物,然后通过按下空格键运行算法来查找最短路径。路径将用紫色标记出来。右键点击可以删除节点。

用pygame写一个A*算法代码

好的,以下是用pygame实现A*算法的代码示例: ```python import pygame import math from queue import PriorityQueue WIDTH = 800 WIN = pygame.display.set_mode((WIDTH, WIDTH)) pygame.display.set_caption("A* Path Finding Algorithm") RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) YELLOW = (255, 255, 0) WHITE = (255, 255, 255) BLACK = (0, 0, 0) PURPLE = (128, 0, 128) ORANGE = (255, 165, 0) GREY = (128, 128, 128) TURQUOISE = (64, 224, 208) class Spot: def __init__(self, row, col, width): self.row = row self.col = col self.x = row * width self.y = col * width self.color = WHITE self.neighbours = [] self.width = width def get_pos(self): return self.row, self.col def is_closed(self): return self.color == RED def is_open(self): return self.color == GREEN def is_barrier(self): return self.color == BLACK def is_start(self): return self.color == ORANGE def is_end(self): return self.color == TURQUOISE def reset(self): self.color = WHITE def make_start(self): self.color = ORANGE def make_closed(self): self.color = RED def make_open(self): self.color = GREEN def make_barrier(self): self.color = BLACK def make_end(self): self.color = TURQUOISE def make_path(self): self.color = PURPLE def draw(self, win): pygame.draw.rect(win, self.color, (self.x, self.y, self.width, self.width)) def update_neighbours(self, grid): self.neighbours = [] if self.row < ROWS - 1 and not grid[self.row + 1][self.col].is_barrier(): # DOWN self.neighbours.append(grid[self.row + 1][self.col]) if self.row > 0 and not grid[self.row - 1][self.col].is_barrier(): # UP self.neighbours.append(grid[self.row - 1][self.col]) if self.col < ROWS - 1 and not grid[self.row][self.col + 1].is_barrier(): # RIGHT self.neighbours.append(grid[self.row][self.col + 1]) if self.col > 0 and not grid[self.row][self.col - 1].is_barrier(): # LEFT self.neighbours.append(grid[self.row][self.col - 1]) def h(p1, p2): x1, y1 = p1 x2, y2 = p2 return abs(x1 - x2) + abs(y1 - y2) def reconstruct_path(came_from, current, draw): while current in came_from: current = came_from[current] current.make_path() draw() def algorithm(draw, grid, start, end): count = 0 open_set = PriorityQueue() open_set.put((0, count, start)) came_from = {} g_score = {spot: float("inf") for row in grid for spot in row} g_score[start] = 0 f_score = {spot: float("inf") for row in grid for spot in row} f_score[start] = h(start.get_pos(), end.get_pos()) open_set_hash = {start} while not open_set.empty(): for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() current = open_set.get()[2] open_set_hash.remove(current) if current == end: reconstruct_path(came_from, end, draw) end.make_end() start.make_start() return True for neighbour in current.neighbours: temp_g_score = g_score[current] + 1 if temp_g_score < g_score[neighbour]: came_from[neighbour] = current g_score[neighbour] = temp_g_score f_score[neighbour] = temp_g_score + h(neighbour.get_pos(), end.get_pos()) if neighbour not in open_set_hash: count += 1 open_set.put((f_score[neighbour], count, neighbour)) open_set_hash.add(neighbour) neighbour.make_open() draw() if current != start: current.make_closed() return False def make_grid(rows, width): grid = [] gap = width // rows for i in range(rows): grid.append([]) for j in range(rows): spot = Spot(i, j, gap) grid[i].append(spot) return grid def draw_grid(win, rows, width): gap = width // rows for i in range(rows): pygame.draw.line(win, GREY, (0, i * gap), (width, i * gap)) for j in range(rows): pygame.draw.line(win, GREY, (j * gap, 0), (j * gap, width)) def draw(win, grid, rows, width): win.fill(WHITE) for row in grid: for spot in row: spot.draw(win) draw_grid(win, rows, width) pygame.display.update() def get_clicked_pos(pos, rows, width): gap = width // rows y, x = pos row = y // gap col = x // gap return row, col def main(win, width): ROWS = 50 grid = make_grid(ROWS, width) start = None end = None run = True while run: draw(win, grid, ROWS, width) for event in pygame.event.get(): if event.type == pygame.QUIT: run = False if pygame.mouse.get_pressed()[0]: # LEFT pos = pygame.mouse.get_pos() row, col = get_clicked_pos(pos, ROWS, width) spot = grid[row][col] if not start and spot != end: start = spot start.make_start() elif not end and spot != start: end = spot end.make_end() elif spot != end and spot != start: spot.make_barrier() elif pygame.mouse.get_pressed()[2]: # RIGHT pos = pygame.mouse.get_pos() row, col = get_clicked_pos(pos, ROWS, width) spot = grid[row][col] spot.reset() if spot == start: start = None elif spot == end: end = None if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE and start and end: for row in grid: for spot in row: spot.update_neighbours(grid) algorithm(lambda: draw(win, grid, ROWS, width), grid, start, end) if event.key == pygame.K_c: start = None end = None grid = make_grid(ROWS, width) pygame.quit() main(WIN, WIDTH) ``` 希望对你有帮助!
阅读全文

相关推荐

最新推荐

recommend-type

STM32之光敏电阻模拟路灯自动开关灯代码固件

这是一个STM32模拟天黑天亮自动开关灯代码固件,使用了0.96寸OLED屏幕显示文字,例程亲测可用,视频示例可B站搜索 285902929
recommend-type

PHP在线工具箱源码站长引流+在线工具箱源码+多款有趣的在线工具+一键安装

PHP在线工具箱源码站长引流+在线工具箱源码+多款有趣的在线工具+一键安装 测试环境:nginx+php5.6+mysql5.5 安装说明:上传后访问安装即可
recommend-type

PageNow大数据可视化开发平台-开源版,基于SprigBoot+Vue构建的数据可视化开发平台,灵活的拖拽式布局、支持多种数据源、丰富的通用组件.zip

PageNow大数据可视化开发平台_开源版,基于SprigBoot+Vue构建的数据可视化开发平台,灵活的拖拽式布局、支持多种数据源、丰富的通用组件PageNow-基础开源版(基于SpringBoot+Vue构建的数据可视化开发平台)介绍基于SprigBoot+Vue构建的数据可视化开发平台,灵活的拖拽式布局、丰富的通用组件,帮助您快速构建与迭代数据大屏页面。基础开源版仅作为交流学习使用,基础开源版将于2021年3月1日开始维护正式更新。如需购买功能更加完善且完善的企业版,请前往官网进行查看并在线体验企业版。官方网站http://pagenow.cn内容结构服务器邮政程序源码web前端主程序源码(基于Vue-cli3.0为基础构建的项目结构)总体架构选择1、 SpringBoot 主架构框架2、 决赛 基于Db的数据库操作3、 德鲁伊 数据库连接池4、 Swagger2 接口测试框架5、 Maven 项目建设管理前端架构型1、 vue mvvm 框架2、 vue-router 路由管理3、 vuex 状态管理4、 axios HTTP
recommend-type

【滤波跟踪】基于matlab松散耦合的四元数扩展卡尔曼滤波器EKF(真实飞行数据)【含Matlab源码 10891期】.zip

Matlab领域上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

PowerShell控制WVD录像机技术应用

资源摘要信息:"录像机" 标题: "录像机" 可能指代了两种含义,一种是传统的录像设备,另一种是指计算机上的录像软件或程序。在IT领域,通常我们指的是后者,即录像机软件。随着技术的发展,现代的录像机软件可以录制屏幕活动、视频会议、网络课程等。这类软件多数具备高效率的视频编码、画面捕捉、音视频同步等功能,以满足不同的应用场景需求。 描述: "录像机" 这一描述相对简单,没有提供具体的功能细节或使用场景。但是,根据这个描述我们可以推测文档涉及的是关于如何操作录像机,或者如何使用录像机软件的知识。这可能包括录像机软件的安装、配置、使用方法、常见问题排查等信息。 标签: "PowerShell" 通常指的是微软公司开发的一种任务自动化和配置管理框架,它包含了一个命令行壳层和脚本语言。由于标签为PowerShell,我们可以推断该文档可能会涉及到使用PowerShell脚本来操作或管理录像机软件的过程。PowerShell可以用来执行各种任务,包括但不限于启动或停止录像、自动化录像任务、从录像机获取系统状态、配置系统设置等。 压缩包子文件的文件名称列表: WVD-main 这部分信息暗示了文档可能与微软的Windows虚拟桌面(Windows Virtual Desktop,简称WVD)相关。Windows虚拟桌面是一个桌面虚拟化服务,它允许用户在云端访问一个虚拟化的Windows环境。文件名中的“main”可能表示这是一个主文件或主目录,它可能是用于配置、管理或与WVD相关的录像机软件。在这种情况下,文档可能包含如何使用PowerShell脚本与WVD进行交互,例如记录用户在WVD环境中的活动,监控和记录虚拟机状态等。 基于以上信息,我们可以进一步推断知识点可能包括: 1. 录像机软件的基本功能和使用场景。 2. 录像机软件的安装和配置过程。 3. 录像机软件的高级功能,如自定义录像设置、自动化任务、音视频编辑等。 4. PowerShell脚本的基础知识,包括如何编写简单和复杂的脚本。 5. 如何利用PowerShell管理录像机软件,实现自动化控制和监控录像过程。 6. Windows虚拟桌面(WVD)的基本概念和使用方法。 7. 如何在WVD环境中集成录像功能,以及如何使用PowerShell进行相关配置和管理。 8. 录像数据的处理和存储,包括录像文件的格式、转码、备份和恢复等。 9. 录像机软件在企业环境中应用的策略和最佳实践。 10. 常见问题诊断和解决方法,以及如何使用PowerShell脚本来应对录像机软件出现的问题。 这个知识点总结覆盖了从基础操作到高级管理的多个方面,旨在为读者提供一个全面的录像机软件使用和管理的框架。通过这些知识点,IT专业人员可以更有效地部署、操作和维护录像机系统,确保录像机软件能够满足各种业务需求。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Honeywell打印机驱动提升秘诀:从基础到高级配置的全方位解析

![HoneywellPrint_DLL_UM_CN.pdf](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190425160011/Anonymous-Types-in-C-1024x540.png) # 摘要 本文针对Honeywell打印机驱动的安装、配置、高级功能配置、故障诊断与优化以及安全与合规性进行了全面的介绍。首先概述了Honeywell打印机驱动的基础知识,随后详细阐述了驱动安装流程、基础打印设置及高级功能的实现。接着,文中探讨了打印机驱动在日常使用中可能遇到的常见问题及其解决方法,并提出了一系列打印性能优
recommend-type

Python输入三个数 a,b,c。判断能否以它们为三个边长构成直角三角形。若能,输出 YES,否则 输出NO。

在Python中,我们可以利用勾股定理来判断三个数a、b和c是否可以作为直角三角形的边长。如果满足a² + b² = c²,则这是一组直角三角形的三边;反之则不是。以下是一个简单的函数实现: ```python def is_right_triangle(a, b, c): if a**2 + b**2 == c**2 or a**2 + c**2 == b**2 or b**2 + c**2 == a**2: # 三种情况考虑,因为两边之和等于第三边的情况不属于常规直角三角形 return "YES" else: return "NO"
recommend-type

探索杂货店后端技术与JavaScript应用

资源摘要信息:"杂货店后端开发项目使用了JavaScript技术。" 在当今的软件开发领域,使用JavaScript来构建杂货店后端系统是一个非常普遍的做法。JavaScript不仅在前端开发中占据主导地位,其在Node.js的推动下,后端开发中也扮演着至关重要的角色。Node.js是一个能够使用JavaScript语言运行在服务器端的平台,它使得开发者能够使用熟悉的一门语言来开发整个Web应用程序。 后端开发是构建杂货店应用系统的核心部分,它主要负责处理应用逻辑、与数据库交互以及确保网络请求的正确响应。后端系统通常包含服务器、应用以及数据库这三个主要组件。 在开发杂货店后端时,我们可能会涉及到以下几个关键的知识点: 1. Node.js的环境搭建:首先需要在开发机器上安装Node.js环境。这包括npm(Node包管理器)和Node.js的运行时。npm用于管理项目依赖,比如各种中间件、数据库驱动等。 2. 框架选择:开发后端时,一个常见的选择是使用Express框架。Express是一个灵活的Node.js Web应用框架,提供了一系列强大的特性来开发Web和移动应用。它简化了路由、HTTP请求处理、中间件等功能的使用。 3. 数据库操作:根据项目的具体需求,选择合适的数据库系统(例如MongoDB、MySQL、PostgreSQL等)来进行数据的存储和管理。在JavaScript环境中,数据库操作通常会依赖于相应的Node.js驱动或ORM(对象关系映射)工具,如Mongoose用于MongoDB。 4. RESTful API设计:构建一个符合REST原则的API接口,可以让前端开发者更加方便地与后端进行数据交互。RESTful API是一种开发Web服务的架构风格,它利用HTTP协议的特性,使得Web服务能够使用统一的接口来处理资源。 5. 身份验证和授权:在杂货店后端系统中,管理用户账户和控制访问权限是非常重要的。这通常需要实现一些身份验证机制,如JWT(JSON Web Tokens)或OAuth,并根据用户角色和权限管理访问控制。 6. 错误处理和日志记录:为了保证系统的稳定性和可靠性,需要实现完善的错误处理机制和日志记录系统。这能帮助开发者快速定位问题,以及分析系统运行状况。 7. 容器化与部署:随着Docker等容器化技术的普及,越来越多的开发团队选择将应用程序容器化部署。容器化可以确保应用在不同的环境和系统中具有一致的行为,极大地简化了部署过程。 8. 性能优化:当后端应用处理大量数据或高并发请求时,性能优化是一个不可忽视的问题。这可能包括数据库查询优化、缓存策略的引入、代码层面的优化等等。 通过以上知识点的综合运用,我们可以构建出一个功能丰富、性能优化良好并且可扩展性强的杂货店后端系统。当然,在实际开发过程中,还需要充分考虑安全性、可维护性和测试等因素。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依