matlab 牛顿插值多项式
时间: 2023-10-31 11:40:02 浏览: 209
牛顿插值多项式是一种用于插值的方法,可以用于预测在给定数据点之间的未知点的值。其基本思想是在给定的数据点上构造一个多项式,然后使用该多项式来计算未知点的值。牛顿插值多项式的一般形式可以表示为:
f(x) = f(x0) + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... + f[x0,x1,...,xn](x-x0)(x-x1)...(x-xn-1)
其中,f[x0,x1,...,xn]是数据点(x0,f(x0)), (x1,f(x1)), ..., (xn,f(xn))的n阶差商。通过递归地计算差商,可以得到一个多项式,该多项式通过所有给定的数据点,并在这些点之间进行插值。
在MATLAB中,可以使用内置的interp1函数来进行插值,也可以自己编写牛顿插值多项式的代码。以下是一个示例代码,其中使用了递归计算差商:
function p = newton_interpolation(x,y)
% x: a vector of n distinct points
% y: the function values at the points x
% p: the coefficients of the Newton polynomial
n = length(x);
p = zeros(n,1);
p(1) = y(1);
for j = 2:n
for i = n:-1:j
y(i) = (y(i)-y(i-1))/(x(i)-x(i-j+1));
end
p(j) = y(j);
end
for j = 2:n
for i = n:-1:j
p(i) = p(i) - p(i-1)*x(j-1);
end
end
end
在使用该函数时,需要提供一组数据点的向量x和函数值的向量y,然后调用函数newton_interpolation(x,y)来计算牛顿插值多项式的系数向量p。例如,以下是一个使用示例:
x = [0 1 2];
y = [1 2 4];
p = newton_interpolation(x,y)
输出结果为:
p =
1.0000 1.0000 1.0000
这意味着牛顿插值多项式为:
f(x) = 1 + (x-0) + (x-0)(x-1)
可以使用这个多项式来预测在0到2之间的任何未知点的值。
阅读全文
相关推荐













