使用pytorch的lstm对数据集aclImdb进行预测

时间: 2024-01-21 21:04:05 浏览: 31
以下是使用PyTorch的LSTM对数据集aclImdb进行预测的示例代码: ``` import torch import torch.nn as nn import torch.optim as optim from torchtext.datasets import IMDB from torchtext.data import Field, LabelField, BucketIterator # 定义字段 text_field = Field(tokenize='spacy', lower=True) label_field = LabelField(dtype=torch.float) # 加载数据集 train_data, test_data = IMDB.splits(text_field, label_field) # 构建词汇表 text_field.build_vocab(train_data, max_size=10000, vectors='glove.6B.100d') label_field.build_vocab(train_data) # 定义模型 class LSTMClassifier(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, num_layers, bidirectional, dropout): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=bidirectional, dropout=dropout) self.fc = nn.Linear(hidden_dim * 2 if bidirectional else hidden_dim, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, text): embedded = self.dropout(self.embedding(text)) output, (hidden, cell) = self.lstm(embedded) hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1)) return self.fc(hidden) # 定义超参数 vocab_size = len(text_field.vocab) embedding_dim = 100 hidden_dim = 256 output_dim = 1 num_layers = 2 bidirectional = True dropout = 0.5 # 初始化模型 model = LSTMClassifier(vocab_size, embedding_dim, hidden_dim, output_dim, num_layers, bidirectional, dropout) # 定义损失函数和优化器 criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(model.parameters()) # 将数据集分成batch BATCH_SIZE = 64 train_iterator, test_iterator = BucketIterator.splits((train_data, test_data), batch_size=BATCH_SIZE) # 训练模型 NUM_EPOCHS = 10 for epoch in range(NUM_EPOCHS): for batch in train_iterator: text = batch.text labels = batch.label optimizer.zero_grad() predictions = model(text).squeeze(1) loss = criterion(predictions, labels) loss.backward() optimizer.step() # 在测试集上测试模型 with torch.no_grad(): correct = 0 total = 0 for batch in test_iterator: text = batch.text labels = batch.label predictions = torch.round(torch.sigmoid(model(text))).squeeze(1) correct += (predictions == labels).sum().item() total += labels.size(0) accuracy = correct / total print('Epoch: %d, Test Accuracy: %.3f' % (epoch+1, accuracy)) ``` 在这个例子中,我们首先定义了两个字段,一个用于文本数据,另一个用于标签数据。然后,我们加载IMDB数据集并构建词汇表。接下来,我们定义了一个LSTM分类器模型,并初始化了超参数、损失函数和优化器。最后,我们将数据集分成batch并训练模型。 在每个epoch结束后,我们在测试集上测试模型,并输出测试精度。在这个例子中,我们使用了BCEWithLogitsLoss作为损失函数,并使用Adam作为优化器。我们也使用了dropout来避免过拟合。

相关推荐

最新推荐

recommend-type

pytorch下使用LSTM神经网络写诗实例

今天小编就为大家分享一篇pytorch下使用LSTM神经网络写诗实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

今天小编就为大家分享一篇Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pytorch学习教程之自定义数据集

在pytorch中,提供了一些接口和类,方便我们定义自己的数据集合,下面完整的试验自定义样本集的整个流程。 开发环境 Ubuntu 18.04 pytorch 1.0 pycharm 实验目的 掌握pytorch中数据集相关的API接口和类 熟悉...
recommend-type

基于pytorch的lstm参数使用详解

今天小编就为大家分享一篇基于pytorch的lstm参数使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pytorch 利用lstm做mnist手写数字识别分类的实例

今天小编就为大家分享一篇pytorch 利用lstm做mnist手写数字识别分类的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。