如何让pcm1794输出全平衡信号

时间: 2023-05-13 18:03:35 浏览: 237
PCM1794是一种高性能数字音频转换器芯片,它可以输出单端(非平衡)和差分(平衡)两种信号。要让PCM1794输出全平衡信号,需要做以下几步: 1. 加入差分运算放大器:将PCM1794的差分输出连接到差分运算放大器的非反相输入端和反相输入端,输出端连接到音频系统中的平衡输入(如XLR)。 2. 调整差分运放的增益:差分运放的增益需要适当调整,使得输出信号的电平尽可能高,但不超出音频系统的动态范围。可以通过改变差分运放的电阻值或使用调节器件来实现。 3. 注意地线的连通:在连接PCM1794和差分运放时,需要格外注意地线的连通。将PCM1794和差分运放的地线连通处接地,以防止产生地环流和杂音。 通过上述几步操作,就可以让PCM1794输出全平衡信号。全平衡信号可以有效地减少噪声和失真,提高音频系统的性能和音质。
相关问题

pcm1794解码电路图

PCM1794解码电路图是指由PCM1794数字音频解码芯片所构成的电子电路图。PCM1794是一款高性能的24位192kHz立体声DAC(数字模拟转换器)芯片,广泛应用于高保真音频设备中。 PCM1794解码电路图主要包含以下几个部分组成: 1. 输入接口部分:包括数字输入接口和时钟输入接口。数字输入接口可以通过SPDIF、I2S或者USB等方式接收音频信号,时钟输入接口是为了提供音频信号的同步和完整性。 2. 解码部分:主要由PCM1794芯片构成。PCM1794能够对接收到的数字信号进行解码,并将其转换为模拟音频信号。该部分一般包含PCM1794的电源、I/V(电流-电压)转换电路以及输出放大电路,用于将解码后的音频信号放大到适当的电压水平。 3. 输出接口部分:将解码后的模拟音频信号传输到功放或扬声器系统,以供音乐播放。 除了以上基本部分外,PCM1794解码电路图还可能包含一些辅助电路,如数字过滤器、数码管显示等。 总之,PCM1794解码电路图是指PCM1794芯片在音频设备中的电路连接方式,通过该电路图可以清晰了解信号的流动路径和主要的功能部分,帮助实现高质量的音频解码和放大。

esp32输出时钟信号到pcm1808

要将ESP32的时钟信号输出到PCM1808,可以使用ESP32的定时器模块和GPIO外设模块来实现。以下是一般的步骤: 1. 配置ESP32的GPIO外设模块,将要用来输出时钟信号的GPIO引脚设置为输出模式。 2. 配置ESP32的定时器模块,设置定时器的时钟源和分频器,以产生所需的时钟频率。 3. 在定时器的中断处理程序中,将输出时钟信号的GPIO引脚翻转,以产生正负的时钟脉冲。 4. 将PCM1808的时钟信号输入引脚连接到ESP32的输出时钟信号的GPIO引脚。 需要注意的是,为了保证时钟信号的稳定性和精度,可以在ESP32的时钟输出引脚和PCM1808的时钟输入引脚之间添加一个衰减器,并通过示波器进行调试和优化。同时,由于时钟信号的频率较高,可能会有一定的EMI(电磁干扰)问题,需要注意电路布局和信号屏蔽等措施。

相关推荐

最新推荐

recommend-type

脉冲信号和电平信号到底有什么区别

脉冲信号是一种离散信号,形状多种多样,与普通...脉冲信号可以用来表示信息,也可以用来作为载波,比如脉冲调制中的脉冲编码调制(PCM),脉冲宽度调制(PWM)等等,还可以作为各种数字电路、高性能芯片的时钟信号。
recommend-type

matlab正弦信号PCM编码译码

%给一个正弦信号,信号输入范围为[-10,10] subplot(2,1,1); plot(t,Signal_m); title('输入正弦信号'); grid; %========================= %>>>>>>>>>>>>>>PCM编码 %========================== %------随机的产生...
recommend-type

实验二PCM编译码实验.doc

通信原理实验报告——实验二PCM编译码实验 ...2、熟悉 PCM 抽样时钟、编码数据和输入/输出时钟之间的关系; 3、了解 PCM 专用大规模集成电路的工作原理和应用; 4、熟悉语音数字化技术的主要指标及测量方法;
recommend-type

I2S与PCM的区别.pdf

I2S 仅仅是 PCM 的一个分支,接口定义都是一样的, I2S 的采样频率一般为 44.1KHZ 和 48KHZ 做,PCM 采样频率一般为 8K,16K。有四组信号: 位时钟信号,同步信号,数 据输入,数据输出.
recommend-type

PCM编码器与PCM解码器的MATLAB实现及性能分析

2. 对模拟信号进行采样、量化、编码(PCM), 将编码后的信号输入信道再进行PCM解码,还原出原信号.建立仿真模型,分析仿真波形. 3. 在编码与解码电路间加上噪声源,或者加入含有噪声源的信道,并给出仿真波形。 4. 在...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。