用python实现神经网络变量筛选的代码
时间: 2023-05-29 12:06:11 浏览: 110
使用Python的神经网络项目
由于您没有提供具体的问题和数据集,下面的代码只是一个简单的示例,它展示了如何使用Python和Scikit-learn库进行特征选择以优化神经网络。
首先,需要导入所需的库:
```python
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.neural_network import MLPClassifier
```
接下来,我们将加载乳腺癌数据集,并将其划分为训练和测试集:
```python
data = load_breast_cancer()
X, y = data.data, data.target
n_samples, n_features = X.shape
X_train, X_test = X[:int(0.8*n_samples)], X[int(0.8*n_samples):]
y_train, y_test = y[:int(0.8*n_samples)], y[int(0.8*n_samples):]
```
然后,我们使用卡方统计量进行特征选择,并选择前10个特征:
```python
selector = SelectKBest(chi2, k=10)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
```
接下来,我们使用选择的变量对神经网络进行训练:
```python
clf = MLPClassifier(hidden_layer_sizes=(30, 30, 30), max_iter=1000)
clf.fit(X_train_selected, y_train)
```
最后,我们可以评估模型并输出结果:
```python
train_accuracy = clf.score(X_train_selected, y_train)
test_accuracy = clf.score(X_test_selected, y_test)
print("Train accuracy:", train_accuracy)
print("Test accuracy:", test_accuracy)
```
这是一个简单的示例,您可以将其扩展为更复杂的问题和数据集。
阅读全文