if __name__ == '__main__': filepath = './models/table-line-fine.h5' ##模型权重存放位置 checkpointer = ModelCheckpoint(filepath=filepath, monitor='loss', verbose=0, save_weights_only=True, save_best_only=True) rlu = ReduceLROnPlateau(monitor='loss', factor=0.1, patience=5, verbose=0, mode='auto', cooldown=0, min_lr=0) model.compile(optimizer=Adam(lr=0.0001), loss='binary_crossentropy', metrics=['acc']) paths = glob('./train/dataset-line/*/*.json') ##table line dataset label with labelme trainP, testP = train_test_split(paths, test_size=0.1) print('total:', len(paths), 'train:', len(trainP), 'test:', len(testP)) batchsize = 4 trainloader = gen(trainP, batchsize=batchsize, linetype=1) testloader = gen(testP, batchsize=batchsize, linetype=1) model.fit_generator(trainloader, steps_per_epoch=max(1, len(trainP) // batchsize), callbacks=[checkpointer], validation_data=testloader, validation_steps=max(1, len(testP) // batchsize), epochs=30)
时间: 2024-04-27 13:25:38 浏览: 115
这段代码是用来训练一个模型的。首先,它会定义一个模型权重的存放位置。然后,它会使用 ModelCheckpoint 和 ReduceLROnPlateau 两个回调函数。其中 ModelCheckpoint 会在每个 epoch 结束后保存模型的权重,只保存最好的那个模型。而 ReduceLROnPlateau 则会在训练过程中,如果发现 loss 不再减少,就会将学习率降低一些,以便更好的收敛。接下来,代码会使用 Adam 优化器和 binary_crossentropy 损失函数来编译模型,并定义了一个数据集的路径。在训练数据集和测试数据集上分别进行训练和验证,并设置了一个 epoch 的数量。
相关问题
--------------------------------------------------------------------------- OSError Traceback (most recent call last) <ipython-input-41-76f2930386d7> in <module>() ----> 1 model.save('CNN_CIFAR10_model_h5') D:\360downloads\Anaconda\envs\tensorflow_cpu\lib\site-packages\keras\engine\network.py in save(self, filepath, overwrite, include_optimizer) 1088 raise NotImplementedError 1089 from ..models import save_model -> 1090 save_model(self, filepath, overwrite, include_optimizer) 1091 1092 def save_weights(self, filepath, overwrite=True): D:\360downloads\Anaconda\envs\tensorflow_cpu\lib\site-packages\keras\engine\saving.py in save_model(model, filepath, overwrite, include_optimizer) 377 opened_new_file = False 378 --> 379 f = h5dict(filepath, mode='w') 380 381 try: D:\360downloads\Anaconda\envs\tensorflow_cpu\lib\site-packages\keras\utils\io_utils.py in __init__(self, path, mode) 184 self._is_file = False 185 elif isinstance(path, str): --> 186 self.data = h5py.File(path, mode=mode) 187 self._is_file = True 188 elif isinstance(path, dict): D:\360downloads\Anaconda\envs\tensorflow_cpu\lib\site-packages\h5py\_hl\files.py in __init__(self, name, mode, driver, libver, userblock_size, swmr, rdcc_nslots, rdcc_nbytes, rdcc_w0, track_order, **kwds) 406 fid = make_fid(name, mode, userblock_size, 407 fapl, fcpl=make_fcpl(track_order=track_order), --> 408 swmr=swmr) 409 410 if isinstance(libver, tuple): D:\360downloads\Anaconda\envs\tensorflow_cpu\lib\site-packages\h5py\_hl\files.py in make_fid(name, mode, userblock_size, fapl, fcpl, swmr) 177 fid = h5f.create(name, h5f.ACC_EXCL, fapl=fapl, fcpl=fcpl) 178 elif mode == 'w': --> 179 fid = h5f.create(name, h5f.ACC_TRUNC, fapl=fapl, fcpl=fcpl) 180 elif mode == 'a': 181 # Open in append mode (read/write). h5py\_objects.pyx in h5py._objects.with_phil.wrapper() h5py\_objects.pyx in h5py._objects.with_phil.wrapper() h5py\h5f.pyx in h5py.h5f.create() OSError: Unable to create file (unable to truncate a file which is already open)
很抱歉,保存模型时出现了一个错误。该错误是由于无法截断已经打开的文件所致。请确保在保存模型之前关闭该文件。你可以尝试将文件关闭并重新运行保存代码。以下是可能的解决方案:
```
model.save('CNN_CIFAR10_model_h5')
```
之后,你可以尝试重新运行保存模型的代码。如果问题仍然存在,请检查是否有其他进程正在使用相同的文件,并关闭它们。
阅读全文