skywalking原理_40张图剖析分布式追踪系统原理及实践

时间: 2023-08-07 15:08:27 浏览: 207
很抱歉,我无法浏览图片,但我可以简要地为您解释SkyWalking的工作原理。 SkyWalking是一个分布式追踪系统,它可以帮助您了解您的应用程序在不同的分布式系统中的性能和行为。它通过监控每个请求的传播路径来实现这一点,并记录每个请求的详细信息。 SkyWalking的工作原理如下: 1. SkyWalking代理:SkyWalking代理是一个轻量级的组件,可以集成到您的应用程序中。它会拦截所有传入和传出的请求,并将它们发送到SkyWalking服务器进行处理。 2. SkyWalking服务器:SkyWalking服务器负责处理代理发送的请求,并将它们存储在数据库中。它还负责生成报告和分析数据。 3. 数据库:SkyWalking使用数据库存储所有的跟踪数据。这些数据包括请求的详细信息,如请求ID、时间戳、服务名称、方法名称、响应时间等。 4. 报告和分析:SkyWalking可以生成各种类型的报告和分析,以帮助您了解您的应用程序的性能和行为。这些报告和分析可以帮助您优化您的应用程序和系统,以提高性能和可靠性。 总之,SkyWalking的工作原理是通过监控每个请求的传播路径来帮助您了解您的应用程序在不同的分布式系统中的性能和行为。
相关问题

skywalking max_pool_size-tomcat_execute_pool

根据提供的引用内容,没有直接提到"skywalking max_pool_size-tomcat_execute_pool"这个参数。因此,我无法提供关于该参数的具体信息。请提供更多相关的引用内容或提供更详细的问题描述,以便我能够更好地回答您的问题。 #### 引用[.reference_title] - *1* *2* *3* [SkyWalking--官网/配置/指南](https://blog.csdn.net/feiying0canglang/article/details/120547501)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

skywalking原理分析

Skywalking是一个分布式系统的应用程序追踪工具,它可以帮助我们监控和分析分布式系统中的应用程序。Skywalking的原理分析主要包括两个方面:链路追踪和指标监控。 1. 链路追踪:Skywalking通过在应用程序中嵌入代理来实现链路追踪。代理会拦截应用程序的请求,并将请求的上下文信息发送到Skywalking Collector。Collector会将这些信息进行聚合和分析,生成应用程序的拓扑图和调用链路图,帮助我们快速定位问题。 2. 指标监控:Skywalking通过在应用程序中嵌入指标采集器来实现指标监控。采集器会定期收集应用程序的性能指标,并将这些指标发送到Skywalking Collector。Collector会将这些指标进行聚合和分析,生成应用程序的性能报告,帮助我们了解应用程序的性能瓶颈和优化方向。

相关推荐

最新推荐

recommend-type

基于SkyWalking的监控系统安装与使用教程

SkyWalking 是一款强大的国产 Application Performance Management (APM) 系统,特别适用于追踪、监控和诊断采用微服务架构、云原生技术或容器化的分布式系统。它提供了可视化的整体解决方案,帮助企业实现对业务...
recommend-type

skywalking6.x部署手册_V1.0.docx

SkyWalking 是一个开源的分布式链路追踪系统,能够实时地追踪和监控分布式系统中的调用链路。下面是 SkyWalking 6.x 的部署手册,旨在帮助用户快速地部署和使用 SkyWalking。 环境搭建 在开始部署 SkyWalking ...
recommend-type

skywalking+es+kafka部署文档.docx

SkyWalking 是一个强大的分布式追踪和应用性能管理(APM)系统,尤其适合微服务架构。本文将详细介绍如何在环境中集成 SkyWalking 8.4.0、Kafka 和 Elasticsearch 7.12.0 的配置和搭建过程。 首先,确保你已下载了 ...
recommend-type

C++标准程序库:权威指南

"《C++标准程式库》是一本关于C++标准程式库的经典书籍,由Nicolai M. Josuttis撰写,并由侯捷和孟岩翻译。这本书是C++程序员的自学教材和参考工具,详细介绍了C++ Standard Library的各种组件和功能。" 在C++编程中,标准程式库(C++ Standard Library)是一个至关重要的部分,它提供了一系列预先定义的类和函数,使开发者能够高效地编写代码。C++标准程式库包含了大量模板类和函数,如容器(containers)、迭代器(iterators)、算法(algorithms)和函数对象(function objects),以及I/O流(I/O streams)和异常处理等。 1. 容器(Containers): - 标准模板库中的容器包括向量(vector)、列表(list)、映射(map)、集合(set)、无序映射(unordered_map)和无序集合(unordered_set)等。这些容器提供了动态存储数据的能力,并且提供了多种操作,如插入、删除、查找和遍历元素。 2. 迭代器(Iterators): - 迭代器是访问容器内元素的一种抽象接口,类似于指针,但具有更丰富的操作。它们可以用来遍历容器的元素,进行读写操作,或者调用算法。 3. 算法(Algorithms): - C++标准程式库提供了一组强大的算法,如排序(sort)、查找(find)、复制(copy)、合并(merge)等,可以应用于各种容器,极大地提高了代码的可重用性和效率。 4. 函数对象(Function Objects): - 又称为仿函数(functors),它们是具有operator()方法的对象,可以用作函数调用。函数对象常用于算法中,例如比较操作或转换操作。 5. I/O流(I/O Streams): - 标准程式库提供了输入/输出流的类,如iostream,允许程序与标准输入/输出设备(如键盘和显示器)以及其他文件进行交互。例如,cin和cout分别用于从标准输入读取和向标准输出写入。 6. 异常处理(Exception Handling): - C++支持异常处理机制,通过throw和catch关键字,可以在遇到错误时抛出异常,然后在适当的地方捕获并处理异常,保证了程序的健壮性。 7. 其他组件: - 还包括智能指针(smart pointers)、内存管理(memory management)、数值计算(numerical computations)和本地化(localization)等功能。 《C++标准程式库》这本书详细讲解了这些内容,并提供了丰富的实例和注解,帮助读者深入理解并熟练使用C++标准程式库。无论是初学者还是经验丰富的开发者,都能从中受益匪浅,提升对C++编程的掌握程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

怎样使scanf函数和printf在同一行表示

在C语言中,`scanf` 和 `printf` 通常是分开使用的,因为它们的功能不同,一个负责从标准输入读取数据,另一个负责向标准输出显示信息。然而,如果你想要在一行代码中完成读取和打印,可以创建一个临时变量存储 `scanf` 的结果,并立即传递给 `printf`。但这种做法并不常见,因为它违反了代码的清晰性和可读性原则。 下面是一个简单的示例,展示了如何在一个表达式中使用 `scanf` 和 `printf`,但这并不是推荐的做法: ```c #include <stdio.h> int main() { int num; printf("请输入一个整数: ");
recommend-type

Java解惑:奇数判断误区与改进方法

Java是一种广泛使用的高级编程语言,以其面向对象的设计理念和平台无关性著称。在本文档中,主要关注的是Java中的基础知识和解惑,特别是关于Java编程语言的一些核心概念和陷阱。 首先,文档提到的“表达式谜题”涉及到Java中的取余运算符(%)。在Java中,取余运算符用于计算两个数相除的余数。例如,`i % 2` 表达式用于检查一个整数`i`是否为奇数。然而,这里的误导在于,Java对`%`操作符的处理方式并不像常规数学那样,对于负数的奇偶性判断存在问题。由于Java的`%`操作符返回的是与左操作数符号相同的余数,当`i`为负奇数时,`i % 2`会得到-1而非1,导致`isOdd`方法错误地返回`false`。 为解决这个问题,文档建议修改`isOdd`方法,使其正确处理负数情况,如这样: ```java public static boolean isOdd(int i) { return i % 2 != 0; // 将1替换为0,改变比较条件 } ``` 或者使用位操作符AND(&)来实现,因为`i & 1`在二进制表示中,如果`i`的最后一位是1,则结果为非零,表明`i`是奇数: ```java public static boolean isOdd(int i) { return (i & 1) != 0; // 使用位操作符更简洁 } ``` 这些例子强调了在编写Java代码时,尤其是在处理数学运算和边界条件时,理解运算符的底层行为至关重要,尤其是在性能关键场景下,选择正确的算法和操作符能避免潜在的问题。 此外,文档还提到了另一个谜题,暗示了开发者在遇到类似问题时需要进行细致的测试,确保代码在各种输入情况下都能正确工作,包括负数、零和正数。这不仅有助于发现潜在的bug,也能提高代码的健壮性和可靠性。 这个文档旨在帮助Java学习者和开发者理解Java语言的一些基本特性,特别是关于取余运算符的行为和如何处理边缘情况,以及在性能敏感的场景下优化算法选择。通过解决这些问题,读者可以更好地掌握Java编程,并避免常见误区。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

The Application of Autocorrelation Function in Economics: Economic Cycle Analysis and Forecasting Modeling

# Application of Autocorrelation Function in Economics: Analysis and Forecasting Models for Economic Cycles ## 1. Theoretical Foundations of Autocorrelation Function The Autocorrelation Function (ACF) is a statistical tool used to measure the correlation between data points in time series data tha