import pandas as pd # 读取包含股票收盘价数据的表格 df = pd.read_csv("E:/应统案例大赛/附件1-股票交易数据/yuce5.csv",encoding='utf-8', index_col=0, parse_dates=True) # 计算前一天的收盘价数据 df_shift = df.shift(1) # 计算每支股票的每日收益率 returns = (df - df_shift) / df_shift # 打印结果 print(returns.head())UnicodeDecodeError: 'utf-8' codec can't decode byte 0xcf in position 0: invalid continuation byte
时间: 2024-02-25 10:53:18 浏览: 107
这个错误通常是由于尝试使用错误的字符编码解码包含非ASCII字符的文本文件导致的。
解决此问题的方法是使用正确的字符编码打开文件。如果不确定文件的字符编码,可以尝试使用一些自动检测字符编码的工具,如chardet库。
下面是一个示例代码,展示如何解决此问题:
```python
import pandas as pd
import chardet
# 自动检测文件的字符编码
with open('E:/应统案例大赛/附件1-股票交易数据/yuce5.csv', 'rb') as f:
result = chardet.detect(f.read())
# 用检测到的字符编码打开文件
df = pd.read_csv('E:/应统案例大赛/附件1-股票交易数据/yuce5.csv', encoding=result['encoding'], index_col=0, parse_dates=True)
# 计算前一天的收盘价数据
df_shift = df.shift(1)
# 计算每支股票的每日收益率
returns = (df - df_shift) / df_shift
# 打印结果
print(returns.head())
```
在这个示例中,我们首先使用`chardet.detect()`函数自动检测文件的字符编码,然后再使用检测到的字符编码打开文件。最终得到了正确的结果。
相关问题
from pypfopt.efficient_frontier import EfficientFrontier from pypfopt import risk_models from pypfopt import expected_returns yuce = pd.read_excel("E:/应统案例大赛/附件1-股票交易数据/yuceclose.xlsx",index_col=0) # 计算预期收益和样本协方差矩阵 mu3 = expected_returns.mean_historical_return(yuce) # 使用历史数据计算预期收益 S3 = risk_models.sample_cov(yuce) # 使用历史数据计算协方差矩阵 # Optimize for maximal Sharpe ratio ef = EfficientFrontier(mu3, S3) raw_weights = ef.max_sharpe() cleaned_weights = ef.clean_weights() ef.save_weights_to_file("yuceweight1.csv") # saves to file print(cleaned_weights) ef.portfolio_performance(verbose=True) # 设置无风险回报率为0 risk_free = 0 # 计算每项资产的夏普比率 RandomPortfolios['Sharpe'] = (RandomPortfolios.Returns - risk_free) / RandomPortfolios.Volatility # 绘制收益-标准差的散点图,并用颜色描绘夏普比率 plt.scatter(RandomPortfolios.Volatility, RandomPortfolios.Returns, c=RandomPortfolios.Sharpe) plt.colorbar(label='Sharpe Ratio') plt.show()修改后面的代码,与前面匹配
可以使用以下代码来绘制资产收益-标准差的散点图,并用颜色描绘夏普比率:
```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 读取预测收盘价数据
yuce = pd.read_excel("E:/应统案例大赛/附件1-股票交易数据/yuceclose.xlsx", index_col=0)
# 计算预期收益和样本协方差矩阵
mu3 = expected_returns.mean_historical_return(yuce) # 使用历史数据计算预期收益
S3 = risk_models.sample_cov(yuce) # 使用历史数据计算协方差矩阵
# 使用EfficientFrontier类优化投资组合
ef = EfficientFrontier(mu3, S3)
raw_weights = ef.max_sharpe()
cleaned_weights = ef.clean_weights()
ef.save_weights_to_file("yuceweight1.csv") # 保存权重到文件
print(cleaned_weights)
ef.portfolio_performance(verbose=True)
# 生成随机投资组合
np.random.seed(1)
n_samples = 10000
weights = np.random.dirichlet(np.ones(len(yuce.columns)), n_samples)
returns = weights.dot(mu3)
volatility = np.sqrt(np.diag(weights @ S3 @ weights.T))
df = pd.DataFrame({'Returns': returns, 'Volatility': volatility})
# 计算夏普比率
risk_free = 0
df['Sharpe'] = (df.Returns - risk_free) / df.Volatility
# 绘制资产收益-标准差的散点图,并用颜色描绘夏普比率
plt.scatter(df.Volatility, df.Returns, c=df.Sharpe, cmap='viridis')
plt.colorbar(label='Sharpe Ratio')
plt.xlabel('Volatility')
plt.ylabel('Expected Return')
plt.show()
```
此代码将资产收益-标准差作为散点图进行可视化,并用颜色描绘夏普比率。可以通过修改yuce变量中的值来适应不同的投资组合。
import bs4 as bs import requests#python的http客户端 import pickle#用于序列化反序列化 import datetime as dt import pandas as pd import pandas_datareader.data as web from matplotlib import style import matplotlib.pyplot as plt from matplotlib.pyplot import MultipleLocator import os def DownloadStock(): style.use('ggplot') start = dt.datetime(2018,6,10) end = dt.datetime(2021,6,10) #根据股票代码从雅虎财经读取该股票在制定时间段的股票数据 df = web.DataReader("600797.SS", 'yahoo',start,end) #保存为对应的文件 df.to_csv('StockData/{}.csv'.format("600797")) def PlotStock(data): plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 x = data['Date'] plt.plot(x, data['Close'], label='Close') plt.plot(x, data['Open'], label='Open') plt.title('2018-2021年股票') plt.xlabel('Date:2018-2021') plt.legend(loc='best') plt.savefig(r'StockData/01.jpg') plt.show() def udoPlotStock(data): plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 x = data['Date'] plt.plot(x, (data['Close']-data['Open'])) plt.title('2018-2021年股票') plt.xlabel('Date:2018-2021') plt.ylabel('涨跌',) plt.savefig(r'StockData/02.jpg') plt.show() if __name__ == '__main__': #获取三年股票数据 albbData=DownloadStock() data=pd.read_csv(r'StockData/600797.csv') #股票交易时间序列图 PlotStock(data) #股票涨跌 udoPlotStock(data) 解释一下这段代码
这段代码是一个简单的示例,用于下载和可视化股票数据。
首先,它导入了需要使用的库,例如bs4用于解析网页、requests用于发送HTTP请求、pickle用于序列化数据、datetime用于日期操作、pandas和pandas_datareader用于数据处理,以及matplotlib用于数据可视化。
然后,定义了一个函数`DownloadStock()`,该函数使用`pandas_datareader`库从雅虎财经获取指定股票在给定时间范围内的数据,并将数据保存为csv文件。
接下来,定义了两个函数`PlotStock()`和`udoPlotStock()`,这两个函数使用matplotlib库绘制股票数据的不同图表。`PlotStock()`函数绘制了股票的收盘价和开盘价随时间的变化曲线图,而`udoPlotStock()`函数绘制了股票的涨跌幅随时间的变化曲线图。
在主程序中,首先调用`DownloadStock()`函数下载股票数据,并将其保存到指定的csv文件中。然后,使用`pandas`库读取该csv文件中的数据,并传递给`PlotStock()`和`udoPlotStock()`函数进行相应的图表绘制。
最后,通过`if __name__ == '__main__':`判断是否直接运行该脚本文件,并执行相应的操作。
总体来说,这段代码展示了如何使用Python获取股票数据并进行简单的数据可视化。
阅读全文
相关推荐
















