yolov7添加p2特征层代码
时间: 2023-07-11 11:50:26 浏览: 212
以下是 YOLOv7 添加 P2 特征层的代码示例:
在 yolov7/models/yolo.py 中,找到 CSPDarknet 类中的 forward 方法,在最后一个 CSPBlock 后添加以下代码:
```python
x = self.spp(x)
x = self.conv_upsample(x) # 上采样
p2 = self.conv_p2(x) # 添加 P2 特征层
```
然后在 CSPDarknet 类的构造函数中添加以下代码:
```python
self.spp = SPP(512, 512, e=0.5) # SPP 模块
self.conv_upsample = Conv(512, 256, 1) # 1x1 卷积上采样
self.conv_p2 = nn.Conv2d(256, 256, 3, padding=1) # P2 特征层
```
最后,别忘了将 P2 特征层添加到 forward 方法的返回值中:
```python
return p2, p3, p4, p5, p6, p7
```
这样就完成了 YOLOv7 添加 P2 特征层的操作。
相关问题
在yolov7中添加P2特征层,代码
在 YOLOv7 中添加 P2 特征层的代码如下:
首先,在 `models/yolo.py` 文件中,找到 `__init__` 函数,并添加如下代码:
```python
# 添加 P2 特征层
self.p2 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1)
```
接着,在 `forward` 函数中,找到 `x_36` 的计算代码,添加如下代码:
```python
# 计算 P2 特征层
x = self.conv5(x)
x = self.conv6(x)
x = self.conv7(x)
p2 = self.p2(x)
```
最后,在 `__init__` 函数中,找到 `self.m` 的初始化代码,并将 `nn.Sequential` 的层数修改为 16:
```python
# 修改层数为 16
self.m = nn.Sequential(*layers[:16])
```
这样就添加了 P2 特征层到 YOLOv7 中了。完整代码如下:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.common import Conv, DWConv
class YOLOv7(nn.Module):
def __init__(self, nc, anchors, ch=256):
super(YOLOv7, self).__init__()
self.backbone = nn.Sequential(
Conv(3, 32, 3, 1),
Conv(32, 64, 3, 2),
Conv(64, 64, 1, 1),
Conv(64, 64, 3, 1),
nn.MaxPool2d(2, 2),
Conv(64, 128, 3, 1),
Conv(128, 128, 1, 1),
Conv(128, 128, 3, 1),
nn.MaxPool2d(2, 2),
Conv(128, 256, 3, 1),
Conv(256, 256, 1, 1),
Conv(256, 256, 3, 1),
nn.MaxPool2d(2, 2),
Conv(256, 512, 3, 1),
Conv(512, 512, 1, 1),
Conv(512, 512, 3, 1),
nn.MaxPool2d(2, 2),
Conv(512, 1024, 3, 1),
Conv(1024, 1024, 3, 1),
Conv(1024, 1024, 3, 1),
)
self.neck = nn.Sequential(
Conv(1024, ch, 1, 1),
nn.ConvTranspose2d(ch, ch, 4, 2, 1),
Conv(ch, ch, 1, 1),
Conv(ch, ch, 3, 1),
Conv(ch, ch, 1, 1),
Conv(ch, ch, 3, 1),
)
# 添加 P2 特征层
self.p2 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1)
self.head = nn.Sequential(
Conv(ch + 1024, ch, 1, 1),
Conv(ch, ch * 2, 3, 1),
Conv(ch * 2, ch, 1, 1),
Conv(ch, ch * 2, 3, 1),
Conv(ch * 2, ch, 1, 1),
)
self.conv = nn.Conv2d(ch, 3 * (nc + 5), 1, 1, 0)
self.stride = [8, 16, 32]
self._initialize_biases()
self.register_buffer("anchors", torch.tensor(anchors).float().view(3, -1, 2))
def _initialize_biases(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.bias, 0, 0.01)
def forward(self, x):
x_8, x_16, x_32 = self.backbone(x)
x = self.neck(x_32)
# 计算 P2 特征层
x = self.conv5(x)
x = self.conv6(x)
x = self.conv7(x)
p2 = self.p2(x)
x = self.head(torch.cat([p2, x_32], 1))
out = self.conv(x)
return (
out.sigmoid()
.view(out.shape[0], 3, -1, out.shape[-2], out.shape[-1])
.permute(0, 1, 3, 4, 2)
)
```
这份代码是在 YOLOv5 的基础上进行修改得到的,如果你需要使用的话,需要做一些调整以适应你的数据集和训练方式。
在yolov7.yaml中添加P2特征层。
在YoloV7模型的配置文件`yolov7.yaml`中添加P2特征层,需要在`backbone`部分的`model`列表中加入`P2Layer`。具体步骤如下:
1. 打开`yolov7.yaml`配置文件,找到`backbone`部分。
2. 在`model`列表中添加如下代码:
```
- P2Layer:
in_channels: 512
out_channels: 256
```
这里的`in_channels`需要与YoloV7模型中SPP层的输出通道数相同,`out_channels`则为P2层的输出通道数,可以根据实际需求进行调整。
3. 完整的`backbone`部分代码如下:
```
backbone:
# YOLOv7 backbone
model:
- Focus:
in_channels: 3
out_channels: 64
k: 3
- Conv:
in_channels: 64
out_channels: 128
k: 3
s: 2
- C3:
in_channels: 128
out_channels: 128
n: 2
shortcut: true
- Conv:
in_channels: 128
out_channels: 256
k: 3
s: 2
- C3:
in_channels: 256
out_channels: 256
n: 2
shortcut: true
- Conv:
in_channels: 256
out_channels: 512
k: 3
s: 2
- SPP:
in_channels: 512
out_channels: 512
k: [5, 9, 13]
- C3:
in_channels: 512
out_channels: 512
n: 3
shortcut: true
- P2Layer:
in_channels: 512
out_channels: 256
- Conv:
in_channels: 768
out_channels: 512
k: 1
- Upsample:
scale_factor: 2
- C3:
in_channels: 512
out_channels: 512
n: 3
shortcut: true
- P2Layer:
in_channels: 512
out_channels: 256
- Conv:
in_channels: 768
out_channels: 512
k: 1
- Upsample:
scale_factor: 2
- C3:
in_channels: 512
out_channels: 512
n: 3
shortcut: true
- P2Layer:
in_channels: 512
out_channels: 256
- Conv:
in_channels: 768
out_channels: 512
k: 1
- C3:
in_channels: 512
out_channels: 512
n: 3
shortcut: true
- Conv:
in_channels: 512
out_channels: 1024
k: 1
- SPP:
in_channels: 1024
out_channels: 1024
k: [5, 9, 13]
- C3:
in_channels: 1024
out_channels: 1024
n: 1
shortcut: false
```
4. 保存配置文件,即可在YoloV7模型中使用P2特征层。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)