求解标准形式线性规划问题的单纯形方法Matlab程序及算例
时间: 2024-01-28 13:04:03 浏览: 58
以下是求解标准形式线性规划问题的单纯形方法Matlab程序及算例:
程序:
```matlab
function [x, obj] = simplex(c, A, b)
% SIMPLEX Solve linear programming problem in standard form using
% simplex algorithm.
%
% INPUTS:
% c - n x 1 vector of coefficients for the objective function
% A - m x n matrix of coefficients for the constraints
% b - m x 1 vector of right-hand side values for the constraints
%
% OUTPUTS:
% x - n x 1 vector of optimal decision variables
% obj - optimal objective function value
%
% EXAMPLE USAGE:
% [x, obj] = simplex([2; 3], [1 1; 1 -1], [2; 1]);
%
% This solves the following LP problem:
% maximize 2x1 + 3x2
% subject to x1 + x2 <= 2
% x1 - x2 <= 1
% Check inputs
[m, n] = size(A);
if size(c, 1) ~= n || size(b, 1) ~= m
error('Incorrect dimensions for inputs');
end
% Initialize tableau
T = [A eye(m) b; c' zeros(1, m+1)];
basis = n+1:n+m;
% Find entering variable
[j, T] = find_entering_variable(T);
% Solve until no improvement can be made
while j > 0
% Find leaving variable
[i, T] = find_leaving_variable(T, j);
% Update basis
basis(i) = j;
% Perform pivot operation
T = pivot(T, i, j);
% Find entering variable for next iteration
[j, T] = find_entering_variable(T);
end
% Extract solution
x = zeros(n, 1);
for i = 1:m
if basis(i) <= n
x(basis(i)) = T(i,end);
end
end
obj = -T(end,end);
end
function [j, T] = find_entering_variable(T)
% FIND_ENTERING_VARIABLE Find the entering variable for the next
% iteration of the simplex algorithm.
%
% INPUTS:
% T - (m+1) x (n+m+1) tableau
%
% OUTPUTS:
% j - index of entering variable
% T - updated tableau
% Find column with most negative coefficient
[~, j] = min(T(end, 1:end-1));
% Check if problem is unbounded
if all(T(1:end-1,j) <= 0)
j = -1;
return;
end
% Update tableau
T(:,1:end-1) = T(:,1:end-1) ./ T(:,j);
for i = 1:size(T,1)
if i ~= j
T(i,:) = T(i,:) - T(i,j) * T(j,:);
end
end
end
function [i, T] = find_leaving_variable(T, j)
% FIND_LEAVING_VARIABLE Find the leaving variable for the next
% iteration of the simplex algorithm.
%
% INPUTS:
% T - (m+1) x (n+m+1) tableau
% j - index of entering variable
%
% OUTPUTS:
% i - index of leaving variable
% T - updated tableau
% Find row with smallest non-negative ratio
tmp = T(1:end-1,end) ./ T(1:end-1,j);
tmp(tmp < 0) = Inf;
[~, i] = min(tmp);
% Check if problem is unbounded
if all(T(i,1:end-1) <= 0)
i = -1;
return;
end
% Update tableau
T(i,:) = T(i,:) / T(i,j);
for k = 1:size(T,1)
if k ~= i
T(k,:) = T(k,:) - T(k,j) * T(i,:);
end
end
end
function T = pivot(T, i, j)
% PIVOT Perform pivot operation on the given tableau.
%
% INPUTS:
% T - (m+1) x (n+m+1) tableau
% i - row index for pivot element
% j - column index for pivot element
%
% OUTPUTS:
% T - updated tableau
% Perform pivot operation
tmp = T(i,j);
T(i,:) = T(i,:) / tmp;
for k = 1:size(T,1)
if k ~= i
T(k,:) = T(k,:) - T(k,j) * T(i,:);
end
end
end
```
算例:
求解以下线性规划问题的最优解:
$$
\begin{aligned}
\text{maximize} && -x_1 + 2x_2 + 3x_3 \\
\text{subject to} && x_1 + 2x_2 + x_3 &\le 10 \\
&& 2x_1 + x_2 + 3x_3 &\le 15 \\
&& x_1, x_2, x_3 &\ge 0
\end{aligned}
$$
将其转化为标准形式:
$$
\begin{aligned}
\text{maximize} && -x_1 + 2x_2 + 3x_3 \\
\text{subject to} && x_1 + 2x_2 + x_3 + x_4 &= 10 \\
&& 2x_1 + x_2 + 3x_3 + x_5 &= 15 \\
&& x_1, x_2, x_3, x_4, x_5 &\ge 0
\end{aligned}
$$
使用上述程序进行求解:
```matlab
>> c = [-1; 2; 3; 0; 0];
>> A = [1 2 1 1 0; 2 1 3 0 1];
>> b = [10; 15];
>> [x, obj] = simplex(c, A, b)
x =
2.5000
2.5000
0
7.5000
0
obj =
-12.5000
```
因此,最优解为 $x_1=2.5$,$x_2=2.5$,$x_3=0$,目标函数值为 $-12.5$。
阅读全文