网格搜索优化lstm超参数的python代码
时间: 2023-10-03 19:11:17 浏览: 339
基于SARIMA模型的网格搜索超参数优化-python-源码
5星 · 资源好评率100%
以下是一个简单的网格搜索优化LSTM超参数的Python代码示例:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, LSTM
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_squared_error
# 准备数据
X_train = np.random.rand(100, 10, 1)
y_train = np.random.rand(100, 1)
# 定义模型
def create_model(lstm_units=50, optimizer='adam'):
model = Sequential()
model.add(LSTM(lstm_units, input_shape=(10, 1)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer=optimizer)
return model
# 定义要搜索的参数
lstm_units = [50, 100, 150]
optimizer = ['adam', 'rmsprop']
# 创建模型
model = KerasRegressor(build_fn=create_model, verbose=0)
# 定义网格参数
param_grid = dict(lstm_units=lstm_units, optimizer=optimizer)
# 进行网格搜索
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X_train, y_train)
# 输出最好的结果
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
# 输出所有结果
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, std, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, std, param))
```
以上代码使用了Keras和Scikit-learn库进行超参数优化,使用LSTM模型对一个随机生成的10维时间序列进行预测。在这个例子中,我们需要搜索2个超参数:LSTM单元数量和优化器类型。这个例子演示了如何使用网格搜索来找到最佳超参数组合。
阅读全文