网格搜索优化lstm分类超参数的python代码
时间: 2023-10-03 11:11:17 浏览: 341
好的,我知道了。以下是使用网格搜索优化lstm分类超参数的Python代码示例:
```python
from sklearn.model_selection import GridSearchCV
from keras.wrappers.scikit_learn import KerasClassifier
from keras.models import Sequential
from keras.layers import Dense, LSTM
from keras.optimizers import RMSprop
import numpy as np
def create_model(units=128, dropout=0.2):
model = Sequential()
model.add(LSTM(units=units, dropout=dropout, input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dense(1, activation='sigmoid'))
optimizer = RMSprop(lr=0.01)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
np.random.seed(42)
# Load data
X_train = np.load('X_train.npy')
y_train = np.load('y_train.npy')
# Create Keras classifier
model = KerasClassifier(build_fn=create_model, verbose=0)
# Define grid search parameters
param_grid = {
'units': [64, 128],
'dropout': [0.2, 0.5]
}
# Perform grid search
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X_train, y_train)
# Print results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
```
以上代码演示了如何使用网格搜索来优化 LSTM 分类器的超参数。在此示例中,我们使用 GridSearchCV 对模型进行训练和评估。我们定义了两个超参数:LSTM 内部细胞单元的数量和丢失率(dropout rate)。GridSearchCV 迭代不同的超参数组合,并使用交叉验证评估每种组合的性能。最终,我们打印出最佳参数组合及其对应的性能得分。
阅读全文