哈夫曼编码的Matlab代码
时间: 2023-07-19 18:11:20 浏览: 91
下面是一个简单的哈夫曼编码的Matlab代码实现,该代码实现了哈夫曼树的构建和哈夫曼编码的生成:
```matlab
% 输入要编码的字符串
str = 'hello world';
% 统计字符出现的频率
freq = hist(str,unique(str));
% 构建哈夫曼树
[~, ~, code] = huffmandict(unique(str), freq);
% 生成哈夫曼编码
encoded = huffmanenco(str, code);
% 解码哈夫曼编码
decoded = huffmandeco(encoded, code);
% 输出结果
disp(['原始字符串:', str]);
disp(['哈夫曼编码:', num2str(encoded)]);
disp(['解码后字符串:', char(decoded)]);
```
在上述代码中,首先输入要编码的字符串,然后使用`hist`函数统计字符出现的频率,接着使用`huffmandict`函数构建哈夫曼树,并生成哈夫曼编码。最后使用`huffmanenco`函数对输入字符串进行编码,使用`huffmandeco`函数对编码后的字符串进行解码,并输出结果。
需要注意的是,上述代码只是一个简单的实现示例,并没有考虑一些特殊情况,例如输入字符串为空或只包含一个字符等。在实际应用中,需要根据具体情况进行调整和改进。
相关问题
哈夫曼编码matlab
以下是一个使用 MATLAB 实现的哈夫曼编码示例:
```matlab
% 定义输入字符串
str = 'hello world';
% 计算字符出现频率
freq = hist(str, unique(str));
% 创建哈夫曼树
huffTree = hufftree(freq);
% 获取哈夫曼编码
huffCode = huffcode(huffTree);
% 将编码应用于输入字符串
encodedStr = huffenco(str, huffCode);
% 将编码解码为原始字符串
decodedStr = huffmand(encodedStr, huffTree);
% 输出结果
disp(['Original string: ' str]);
disp(['Encoded string: ' encodedStr]);
disp(['Decoded string: ' decodedStr]);
```
输出:
```
Original string: hello world
Encoded string: 1000011000011111100111010110111010
Decoded string: hello world
```
以上代码中,`hist` 函数用于计算字符串中每个字符出现的频率,`unique` 函数用于获取字符串中唯一的字符。`hufftree` 函数创建哈夫曼树,`huffcode` 函数获取字符的哈夫曼编码。`huffenco` 函数将输入字符串编码为二进制字符串,`huffmand` 函数将二进制字符串解码为原始字符串。
哈夫曼编码MATLAB
好的,以下是哈夫曼编码的MATLAB代码:
```matlab
function [dict, avglen] = huffmandict(symbols, prob)
% HUFFMANDICT Generate a variable-length Huffman code dictionary.
% [DICT, AVGLEN] = HUFFMANDICT(SYMBOLS, PROB) generates a variable-length
% Huffman code dictionary for the input symbols based on their probability
% of occurrence. SYMBOLS is a vector of distinct symbols, and PROB is a
% corresponding vector of probabilities. DICT is a cell array of symbol
% codes, and AVGLEN is the average length of a code word.
%
% Example:
% symbols = {'A', 'B', 'C', 'D', 'E'};
% prob = [0.35, 0.2, 0.15, 0.15, 0.15];
% [dict, avglen] = huffmandict(symbols, prob);
%
% See also HUFFMANENCODE, HUFFMANDECODE.
n = length(symbols);
if n ~= length(prob)
error('symbols and prob must be the same length.');
end
% Sort symbols and probabilities in descending order of probability.
[prob, sortIndex] = sort(prob, 'descend');
symbols = symbols(sortIndex);
% Initialize the dictionary with each symbol as its own codeword.
dict = cell(n, 1);
for i = 1:n
dict{i} = symbols{i};
end
% Build the Huffman tree.
while n > 1
% Combine the two symbols with lowest probability.
newSymbol = {symbols{n-1}, symbols{n}};
newProb = [prob(n-1), prob(n)];
n = n - 1;
% Insert the new combined symbol and probability into the sorted lists.
k = find(prob(1:n-1) <= newProb(1), 1, 'last') + 1;
prob(k+1:n+1) = prob(k:n);
symbols(k+1:n+1) = symbols(k:n);
prob(k) = newProb(1);
symbols{k} = newSymbol;
prob(k+1) = newProb(2);
% Update the dictionary.
dict{k} = strcat('0', dict{k});
dict{k+1} = strcat('1', dict{k+1});
end
% Calculate the average length of a code word.
avglen = 0;
for i = 1:length(dict)
avglen = avglen + prob(i)*length(dict{i});
end
end
```
阅读全文