jetson inference怎么加速yolov5 应该使用什么命令

时间: 2023-03-28 22:01:04 浏览: 43
您可以使用以下命令来加速 YOLOv5 在 Jetson Inference 上的运行: ``` ./detectnet --network=yolov5 [--camera=/dev/video] [--width=640] [--height=480] [--threshold=.5] [--overlay=1] [--alpha=175] [--view=] [--input-blob=input_] [--output-cvg=scores] [--output-bbox=boxes] [--output-layer=conv2d_59_conv2d_59] [--verbose] ``` 其中,`--network=yolov5` 表示使用 YOLOv5 模型,`--camera=/dev/video` 表示使用摄像头作为输入,`--width=640` 和 `--height=480` 表示输入图像的宽度和高度,`--threshold=.5` 表示目标检测的置信度阈值,`--overlay=1` 表示在输出图像上叠加检测框和标签,`--alpha=175` 表示叠加的透明度,`--view=` 表示不显示输出图像,`--input-blob=input_` 表示输入图像的名称,`--output-cvg=scores` 和 `--output-bbox=boxes` 表示输出的置信度和边界框,`--output-layer=conv2d_59_conv2d_59` 表示输出的特征图层,`--verbose` 表示输出详细信息。 您可以根据实际情况调整这些参数来优化 YOLOv5 的性能。

相关推荐

要在Jetson Nano上部署Yolov5,您可以按照以下步骤进行操作: 1. 将生成的.wts文件复制到Jetson Nano上的yolov5文件夹中。您可以使用U盘将文件从Windows电脑复制到Jetson Nano上的yolov5文件夹中。 2. 打开yololayer.h文件,并根据您训练模型的类别数量修改CLASS_NUM的值。这个值应该与您训练模型时使用的类别数量相匹配。 3. 在yolov5文件夹中打开终端,并依次运行以下指令: mkdir build cd build cmake .. make sudo ./yolov5 -s ../yolov5s.wts yolov5s.engine 4. 这样就生成了yolov5s.engine文件,可以用于在Jetson Nano上进行目标检测。 另外,由于Jetson Nano的性能限制,yolov5s模型的识别速度大约为1秒9帧。如果您想提升性能,可以安装pycuda来加速计算。您可以参考相关教程来安装pycuda。 此外,如果您想在Jetson Nano上使用PyCharm进行代码调试,您还需要安装JDK。您可以使用以下指令安装JDK: sudo apt install openjdk-11-jdk 请注意,Jetson Nano在运行原版yolov5时可能会受到内存限制,建议使用命令行来运行最终的部署。 #### 引用[.reference_title] - *1* [Jetson Nano部署YOLOv5与Tensorrtx加速——(自己走一遍全过程记录)](https://blog.csdn.net/Mr_LanGX/article/details/128094428)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Jetson nano部署Yolov5 ——从烧录到运行 1:1复刻全过程](https://blog.csdn.net/IamYZD/article/details/119618950)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
### 回答1: Jetson Xavier NX 是 NVIDIA 推出的一款 AI 开发板,搭载了 NVIDIA Xavier 处理器,可用于进行深度学习和计算机视觉任务。而 YOLOv5 是一种基于深度学习的目标检测算法,可用于在图像或视频中实时检测多个目标。 如果您想在 Jetson Xavier NX 上使用 YOLOv5 进行目标检测,可以按照以下步骤进行: 1. 安装 JetPack SDK。JetPack 是 NVIDIA 提供的一个软件开发套件,包含了操作系统、CUDA 工具包、cuDNN 库、TensorRT 库等组件,可以帮助您在 Jetson Xavier NX 上进行深度学习开发。您可以从 NVIDIA 官网下载并安装 JetPack SDK。 2. 下载 YOLOv5 源代码。您可以从 YOLOv5 的 GitHub 仓库下载最新的源代码。下载完成后,将源代码上传至 Jetson Xavier NX 上。 3. 安装依赖项。在 Jetson Xavier NX 上,您需要安装 Python 3、NumPy、PyTorch、OpenCV 等软件包。可以使用 pip 命令进行安装。例如,安装 PyTorch 可以使用以下命令: pip install torch torchvision torchaudio 4. 将 YOLOv5 模型转换为 TensorRT 格式。在 Jetson Xavier NX 上,可以使用 TensorRT 库对模型进行优化,从而提高推理速度。您需要使用 YOLOv5 源代码中提供的脚本将模型转换为 TensorRT 格式。例如,要将 YOLOv5s 模型转换为 TensorRT 格式,可以使用以下命令: python3 models/export.py --weights yolov5s.pt --img 640 --batch 1 5. 运行目标检测程序。在 Jetson Xavier NX 上,可以使用 YOLOv5 源代码中提供的 detect.py 脚本运行目标检测程序。例如,要在图像中进行目标检测,可以使用以下命令: python3 detect.py --weights yolov5s.torch --img 640 --conf 0.25 --source image.jpg 其中,--weights 参数指定要加载的模型文件,--img 参数指定输入图像的大小,--conf 参数指定目标检测的置信度阈值,--source 参数指定输入图像的文件名。 希望这些步骤对您有所帮助! ### 回答2: Jetson Xavier NX是NVIDIA最新发布的低功耗高性能AI计算平台,被称为最强大的AI小型电脑,其搭载的芯片组拥有384个张量核心,达到了11TFlops的计算能力。YOLOv5是目前最先进的目标检测算法之一,能够在保持高准确率的同时实现快速的目标识别和定位。那么Jetson Xavier NX和YOLOv5结合有哪些优势呢? 首先,Jetson Xavier NX的高性能和低功耗使得它非常适合运行YOLOv5算法,因为YOLOv5需要大量的计算资源和内存来进行目标检测和分类,而Jetson Xavier NX能够提供强大的AI计算能力和高速的数据传输,减少了运行YOLOv5算法时的时延。 其次,Jetson Xavier NX还具有较高的多任务处理能力和深度学习推理速度,使得它能够同时运行多个摄像头的视频流进行实时的目标检测和追踪,而不需要降低图像处理的分辨率,从而更好地保持目标检测的准确率和实时性。 此外,Jetson Xavier NX还支持NVIDIA TensorRT和CUDA加速,这两种技术可以将训练好的神经网络的推理速度加速数倍,使得Jetson Xavier NX能够更快地处理复杂的目标检测任务和各种AI场景。 因此,Jetson Xavier NX和YOLOv5的结合可以为安防、自动驾驶、智能交通等领域的应用提供更高效、更准确和更实时的解决方案。 ### 回答3: Jetson Xavier NX是英伟达推出的高性能边缘计算平台,搭载NVIDIA的Volta架构和Tensor Cores,支持AI推理、复杂的计算任务和图形渲染。而Yolov5是一种基于深度学习的目标检测算法。 Jetson Xavier NX搭载着NVIDIA的高效AI处理芯片,能够支持高效的AI推理,使得检测速度非常快,对于复杂的计算任务有着非常优秀的性能表现。而Yolov5则是基于深度学习算法的目标检测算法,相对于传统的算法有着更好的准确度和速度。 结合Jetson Xavier NX和Yolov5,我们可以使用Jetson Xavier NX作为高性能边缘计算平台进行目标检测应用的开发。使用Yolov5算法来进行目标检测,可以在保证准确度的前提下提高检测速度,达到更好的实时性能。 有些应用需要在机器上进行目标检测,但是机器的计算能力始终存在限制,这就需要像Jetson Xavier NX这样的高性能计算平台来支持更好的性能表现。使用Yolov5算法,可以在保证准确率的同时提高检测速度,让机器实现实时检测,以获得更好的应用体验。 总之,Jetson Xavier NX和Yolov5的结合可以在保证准确度的前提下提高目标检测的速度,使得应用具备更好的实时性能,具有非常广泛的应用价值。
要在Jetson Nano上配置yolov5环境,可以按照以下步骤进行操作: 1. 首先,由于Jetson Nano使用的是aarch64架构,无法直接使用Anaconda。因此,需要手动安装所需的依赖项。 2. 克隆yolov5仓库。在Jetson Nano上执行以下命令: git clone https://github.com/ultralytics/yolov5.git 3. 进入yolov5目录: cd yolov5 4. 更新pip: python -m pip install --upgrade pip 5. 安装所需的依赖项: pip install -r requirements.txt 6. 如果遇到matplotlib包安装失败的问题,可以尝试更换国内源。可以执行以下命令重新安装matplotlib: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib 7. 确认已安装的Python包: python3 -m pip list 8. 接下来,可以使用以下命令进行yolov5的测试: - 图片测试: python3 detect.py --source data/images/bus.jpg --weights yolov5n.pt --img 640 - 视频测试(需要自己准备视频): python3 detect.py --source video.mp4 --weights yolov5n.pt --img 640 - 摄像头测试: python3 detect.py --source 0 --weights yolov5n.pt --img 640 9. 如果要打开海康摄像头,可以执行以下命令: python detect.py --source rtsp://admin:xxxxxx@xxx.xxx.xxx.xxx:554/Streaming/Channels/101 --weights yolov5s.pt 请注意,以上步骤仅供参考,具体操作可能会因环境和需求而有所不同。 #### 引用[.reference_title] - *1* *3* [在英伟达 jeason nano配置yolov5](https://blog.csdn.net/laoli_/article/details/128215160)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [jetson nano 配置yolov5](https://blog.csdn.net/ckq707718837/article/details/125310192)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
YOLOv5是一种目标检测深度学习算法,它在推理速度和精度上都有较好的性能。要在Jetson Nano上部署YOLOv5目标检测,可以按照以下步骤进行操作: 1. 首先,需要将训练好的YOLOv5s权重文件转换为wts文件格式。然后,使用build工具将wts文件转换为TensorRT的engine文件。这样就可以对输入的Tensors进行加速处理并得到推理的输出结果。\[2\] 2. 在Jetson Nano上部署YOLOv5目标检测,还需要修改文件夹DeepStream-Yolo/external/yolov5/nvdsinfer_custom_impl_Yolo下的文件yololayer.h和yololayer.cu,以使其可以在YOLOv5 V4.0上正常工作。\[3\] 通过以上步骤,你就可以在Jetson Nano上成功部署YOLOv5目标检测算法了。希望对你有所帮助! #### 引用[.reference_title] - *1* *2* [Jetson Nano 部署(1):YOLOv5 目标检测实战介绍](https://blog.csdn.net/weixin_38346042/article/details/126399006)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Jetson Nano部署实现(一)——Yolov5目标检测-Jetson Nano部署](https://blog.csdn.net/qq_40305597/article/details/117320573)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

最新推荐

chromedriver_mac64_112.0.5615.28.zip

chromedriver可执行程序下载,请注意对应操作系统和浏览器版本号,其中文件名规则为 chromedriver_操作系统_版本号,比如 chromedriver_win32_102.0.5005.27.zip表示适合windows x86 x64系统浏览器版本号为102.0.5005.27 chromedriver_linux64_103.0.5060.53.zip表示适合linux x86_64系统浏览器版本号为103.0.5060.53 chromedriver_mac64_m1_101.0.4951.15.zip表示适合macOS m1芯片系统浏览器版本号为101.0.4951.15 chromedriver_mac64_101.0.4951.15.zip表示适合macOS x86_64系统浏览器版本号为101.0.4951.15 chromedriver_mac_arm64_108.0.5359.22.zip表示适合macOS arm64系统浏览器版本号为108.0.5359.22

分布式高并发.pdf

分布式高并发

基于多峰先验分布的深度生成模型的分布外检测

基于多峰先验分布的深度生成模型的似然估计的分布外检测鸭井亮、小林圭日本庆应义塾大学鹿井亮st@keio.jp,kei@math.keio.ac.jp摘要现代机器学习系统可能会表现出不期望的和不可预测的行为,以响应分布外的输入。因此,应用分布外检测来解决这个问题是安全AI的一个活跃子领域概率密度估计是一种流行的低维数据分布外检测方法。然而,对于高维数据,最近的工作报告称,深度生成模型可以将更高的可能性分配给分布外数据,而不是训练数据。我们提出了一种新的方法来检测分布外的输入,使用具有多峰先验分布的深度生成模型。我们的实验结果表明,我们在Fashion-MNIST上训练的模型成功地将较低的可能性分配给MNIST,并成功地用作分布外检测器。1介绍机器学习领域在包括计算机视觉和自然语言处理的各个领域中然而,现代机器学习系统即使对于分

阿里云服务器下载安装jq

根据提供的引用内容,没有找到与阿里云服务器下载安装jq相关的信息。不过,如果您想在阿里云服务器上安装jq,可以按照以下步骤进行操作: 1.使用wget命令下载jq二进制文件: ```shell wget https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 -O jq ``` 2.将下载的jq文件移动到/usr/local/bin目录下,并添加可执行权限: ```shell sudo mv jq /usr/local/bin/ sudo chmod +x /usr/local/bin/jq ``` 3.检查j

毕业论文java vue springboot mysql 4S店车辆管理系统.docx

包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。

"结构化语言约束下的安全强化学习框架"

使用结构化语言约束指导安全强化学习Bharat Prakash1,Nicholas Waytowich2,Ashwinkumar Ganesan1,Tim Oates1,TinooshMohsenin11马里兰大学,巴尔的摩县(UMBC),2美国陆军研究实验室,摘要强化学习(RL)已经在解决复杂的顺序决策任务中取得了成功,当一个定义良好的奖励函数可用时。对于在现实世界中行动的代理,这些奖励函数需要非常仔细地设计,以确保代理以安全的方式行动。当这些智能体需要与人类互动并在这种环境中执行任务时,尤其如此。然而,手工制作这样的奖励函数通常需要专门的专业知识,并且很难随着任务复杂性而扩展。这导致了强化学习中长期存在的问题,即奖励稀疏性,其中稀疏或不明确的奖励函数会减慢学习过程,并导致次优策略和不安全行为。 更糟糕的是,对于RL代理必须执行的每个任务,通常需要调整或重新指定奖励函数。另一�

mac redis 的安装

以下是在Mac上安装Redis的步骤: 1. 打开终端并输入以下命令以安装Homebrew: ```shell /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" ``` 2. 安装Redis: ```shell brew install redis ``` 3. 启动Redis服务: ```shell brew services start redis ``` 4. 验证Redis是否已成功安装并正在运行: ```shell redis-cli ping

计算机应用基础Excel题库--.doc

计算机应用根底Excel题库 一.填空 1.Excel工作表的行坐标范围是〔 〕。 2.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。 3.对数据清单中的数据进行排序时,对每一个字段还可以指定〔 〕。 4.Excel97共提供了3类运算符,即算术运算符.〔 〕 和字符运算符。 5.在Excel中有3种地址引用,即相对地址引用.绝对地址引用和混合地址引用。在公式. 函数.区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 6.在Excel 工作表中,在某单元格的编辑区输入"〔20〕〞,单元格内将显示( ) 7.在Excel中用来计算平均值的函数是( )。 8.Excel中单元格中的文字是( 〕对齐,数字是( )对齐。 9.Excel2021工作表中,日期型数据"2008年12月21日"的正确输入形式是( )。 10.Excel中,文件的扩展名是( )。 11.在Excel工作表的单元格E5中有公式"=E3+$E$2",将其复制到F5,那么F5单元格中的 公式为( )。 12.在Excel中,可按需拆分窗口,一张工作表最多拆分为 ( )个窗口。 13.Excel中,单元格的引用包括绝对引用和( ) 引用。 中,函数可以使用预先定义好的语法对数据进行计算,一个函数包括两个局部,〔 〕和( )。 15.在Excel中,每一张工作表中共有( )〔行〕×256〔列〕个单元格。 16.在Excel工作表的某单元格内输入数字字符串"3997",正确的输入方式是〔 〕。 17.在Excel工作薄中,sheet1工作表第6行第F列单元格应表示为( )。 18.在Excel工作表中,单元格区域C3:E4所包含的单元格个数是( )。 19.如果单元格F5中输入的是=$D5,将其复制到D6中去,那么D6中的内容是〔 〕。 Excel中,每一张工作表中共有65536〔行〕×〔 〕〔列〕个单元格。 21.在Excel工作表中,单元格区域D2:E4所包含的单元格个数是( )。 22.Excel在默认情况下,单元格中的文本靠( )对齐,数字靠( )对齐。 23.修改公式时,选择要修改的单元格后,按( )键将其删除,然后再输入正确的公式内容即可完成修改。 24.( )是Excel中预定义的公式。函数 25.数据的筛选有两种方式:( )和〔 〕。 26.在创立分类汇总之前,应先对要分类汇总的数据进行( )。 27.某一单元格中公式表示为$A2,这属于( )引用。 28.Excel中的精确调整单元格行高可以通过〔 〕中的"行〞命令来完成调整。 29.在Excel工作簿中,同时选择多个相邻的工作表,可以在按住( )键的同时,依次单击各个工作表的标签。 30.在Excel中有3种地址引用,即相对地址引用、绝对地址引用和混合地址引用。在公式 、函数、区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 31.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。多重排序 32.Excel工作表的行坐标范围是( 〕。1-65536 二.单项选择题 1.Excel工作表中,最多有〔〕列。B A.65536 B.256 C.254 D.128 2.在单元格中输入数字字符串100083〔邮政编码〕时,应输入〔〕。C A.100083 B."100083〞 C. 100083   D.'100083 3.把单元格指针移到AZ1000的最简单方法是〔〕。C A.拖动滚动条 B.按+〈AZ1000〉键 C.在名称框输入AZ1000,并按回车键 D.先用+〈 〉键移到AZ列,再用+〈 〉键移到1000行 4.用〔〕,使该单元格显示0.3。D A.6/20 C.="6/20〞 B. "6/20〞 D.="6/20〞 5.一个Excel工作簿文件在第一次存盘时不必键入扩展名,Excel自动以〔B〕作为其扩展 名。 A. .WK1 B. .XLS C. .XCL D. .DOC 6.在Excel中,使用公式输入数据,一般在公式前需要加〔〕A A.= B.单引号 C.$ D.任意符号 7.在公式中输入"=$C1+E$1〞是〔〕C A.相对引用 B.绝对引用 C.混合引用 D.任意引用 8.以下序列中,不能直接利用自动填充快速输入的是〔 〕B A.星期一.星期二.星期三 .…… B.第一类.第二类.第三类.…… C.甲.乙.丙.…… D.Mon.Tue.Wed.…… 9.工作表中K16单元格中为公式"=F6×$D$4〞,在第3行处插入一行,那么插入后K7单元 格中的公式为〔 〕A A.=F7*$D$5 B.=F7*$D$4 C

基于PC机资源的分布式计算系统中相干任务求解方法及其优势

© 2014 Anatoly Kalyaev,Iakov Korovin.出版社:Elsevier B.V.由美国应用科学研究所负责选择和/或同行评审可在www.sciencedirect.com在线获取ScienceDirectAASRI Procedia 9(2014)131 - 1372014年AASRI电路与信号处理会议(CSP 2014)利用空闲PC机解决相干任务Anatoly Kalyaeva *,Iakov Korovina南方联邦大学多处理器计算系统科学研究所,2,塔甘罗格347922,俄罗斯摘要本文提出了一种基于PC机资源的分布式计算系统中相干任务求解的新方法。这些资源的参数是动态变化的,这使得它很难在分布式计算中的应用。该方法采用多智能体方法,通过智能体的主动控制,实现了分布式计算系统中个人计算机的有效利用,并通过智能体之间的交互,分散调度任务求解过程。为了解决每一个传入的连贯任务,系统的代理联合成社区,这使得它更容易调度和执行计算。该方法的主要优点是降低了分布式�

ERROR 1045 (28000): Access denied for user 'daizong'@'localhost' (using password: NO) mac

这个错误提示表明您正在尝试使用用户名'daizong'在本地主机上连接到MySQL服务器,但是没有提供密码。这可能是因为您在连接字符串中没有指定密码,或者您提供的密码不正确。要解决此问题,您可以尝试以下几个步骤: 1. 确保您在连接字符串中提供了正确的密码。例如,如果您的密码是'password',则您的连接字符串应该类似于以下内容: ``` mysql -u daizong -ppassword ``` 2. 如果您确定密码正确,但仍然无法连接,请尝试重置MySQL root用户的密码。您可以按照以下步骤操作: - 停止MySQL服务器 ```