哈希表的openaddressing
时间: 2024-05-18 15:16:47 浏览: 47
哈希表的 open addressing 是一种解决哈希冲突的方法,也称为闭散列法。在这种方法中,如果哈希函数计算出的槽已经被占用了,那么就会向后寻找未被占用的槽,直到找到一个空槽或者遍历完整个哈希表为止。
这种方法有几种实现方式,比如线性探测和二次探测。在线性探测中,如果当前槽已经被占用,就会往后一个个地探测,直到找到一个空槽为止。而在二次探测中,如果当前槽已经被占用,就会跳过一定的距离,比如跳过1、4、9个槽,直到找到一个空槽为止。
使用 open addressing 的哈希表需要考虑到槽的装载因子,即已经占用的槽数量与总槽数量的比值。如果装载因子过高,会导致哈希表的性能下降,因为查找空槽的时间会变长。因此,需要在装载因子达到一定阈值时,对哈希表进行扩容,以保证哈希表的性能。
相关问题
什么说哈希表的本质是个数组呢?那就得看看,哈希表是怎么来实现的了,一般来说啊,实现哈希表我们可以采用两种方
对于哈希表的实现方法,一般可以采用两种方式:开放地址法和链表法。而哈希表的本质是个数组,是因为哈希表在实现时,会将键(key)通过哈希函数转化为数组下标(index),然后将对应的值(value)存储在该下标对应的数组单元中。下面是两种哈希表实现方法的简要介绍:
1. 开放地址法(Open Addressing)
开放地址法是一种哈希表冲突解决方法,当发生哈希冲突时,开放地址法会尝试从发生冲突的位置开始,向后查找尚未被占用的下一个数组单元,直到找到一个空闲单元为止,然后将对应的值存储在该单元中。常用的开放地址法有线性探测、二次探测和双重哈希等。
2. 链表法(Chaining)
链表法是一种哈希表冲突解决方法,当哈希冲突发生时,链表法会在对应的数组单元中存储一个链表或者红黑树等数据结构,然后将对应的值插入到链表或者红黑树中。这样,当发生哈希冲突时,新的数据可以直接插入链表或者红黑树的末尾,而不会影响到已经存储在链表或者红黑树中的数据。
下面是两种哈希表实现方法的代码示例:
1. 使用Python中的字典实现哈希表(采用的是链表法)[^1]
```python
# 创建一个空字典
hash_table = {}
# 向字典中添加键值对
hash_table['name'] = 'Tom'
hash_table['age'] = 28
# 获取字典中的值
print(hash_table['name']) # 输出:Tom
print(hash_table['age']) # 输出:28
```
2. 使用Python中的哈希表模块`hashlib`实现哈希表(采用的是开放地址法)[^2]
```python
import hashlib
# 创建一个哈希表
hash_table = {}
# 定义一个哈希函数
def hash_func(key):
return int(hashlib.md5(key.encode()).hexdigest(), 16) % 10
# 添加键值对到哈希表中
hash_table[hash_func('name')] = 'Tom'
hash_table[hash_func('age')] = 28
# 获取哈希表中的值
print(hash_table[hash_func('name')]) # 输出:Tom
print(hash_table[hash_func('age')]) # 输出:28
```
c++哈希表哈希冲突怎么办
哈希冲突是指不同的键值对在哈希表中计算出相同的哈希值,导致它们被映射到相同的索引位置。当发生哈希冲突时,可以使用以下两种常见的解决方法:
1. 链接法(Chaining):使用链表或其他数据结构,在哈希表的每个索引位置上维护一个链表,将哈希值相同的键值对组织在一起。当发生冲突时,新的键值对可以添加到链表的末尾。这样可以避免键值对被覆盖,但是会增加额外的内存消耗和遍历链表的时间。
2. 开放地址法(Open Addressing):在哈希表中寻找下一个可用的空槽来存储冲突的键值对。常见的开放地址法包括线性探测、二次探测和双重散列。线性探测是指当发生冲突时,依次查找下一个空槽;二次探测是指使用二次方程来确定下一个空槽;双重散列是指使用第二个哈希函数来计算下一个空槽的位置。开放地址法可以减少额外的内存消耗,但是可能会导致聚集现象,即一些索引位置上的键值对密集堆积,影响查找效率。
选择合适的解决方法取决于具体的应用场景和需求。在C++中,STL库提供了unordered_map容器,它实现了哈希表,并且默认使用链表法来解决哈希冲突。
阅读全文