检查下列语句的语法和拼写问题。Traditional network security situation prediction methods depend on the accuracy of historical situation value. Moreover, there are differences in correlation and importance among various network security factors. In order to solve these problems, a combined prediction model based on the temporal convolution attention network (TCAN) and bi-directional gate recurrent unit (BiGRU) network optimized by singular spectrum analysis (SSA) and improved quantum particle swarm optimization algorithm (IQPSO) was proposed. This model was first decomposed and reconstructed into a series of subsequences through the SSA of network security situation data. Next, a prediction model of TCAN-BiGRU was established for each subsequence, respectively. The TCN with relatively simple structure was used in the TCAN to extract features from the data. Besides, the improved channel attention mechanism (CAM) was used to extract important feature information from TCN. Afterwards, the before-after status of the learning situation value of the BiGRU neural network was used to extract more feature information from sequences for prediction. Meanwhile, an improved IQPSO was proposed to optimize the hyper-parameter of the BiGRU neural network. Finally, the prediction results of subsequence were superimposed to obtain the final predicted value. In the experiment, on the one hand, the IQPSO was compared with other optimization algorithms; and the results showed that the IQPSO has better optimization performance; on the other hand, the comparison with traditional prediction methods was performed through the simulation experiment and the established prediction model; and the results showed that the combined prediction model established has higher prediction accuracy.
时间: 2023-03-08 15:19:20 浏览: 185
我们可以看到,本文提出的综合预测模型基于时间卷积注意网络(TCAN)和双向门递归单元(BiGRU)网络,并通过奇异谱分析(SSA)和改进的量子粒子群优化算法(IQPSO)进行优化。实验表明,该模型具有更高的预测精度。
阅读全文