一个名为random_label的文件夹内有40个文件,名字分别为label_1.npy到label_40.npy,转换成一个名为y的形状为(40,)的tensor,其中y中只包含0和1两个值
时间: 2023-12-10 19:36:56 浏览: 74
可以使用NumPy和PyTorch来实现这个功能。首先,使用NumPy来读取文件夹中的所有文件,并将它们转换为一个形状为(40,)的NumPy数组。然后,使用PyTorch将NumPy数组转换为一个tensor,并将所有非零值设置为1。
下面是一个示例代码:
```python
import os
import numpy as np
import torch
# 读取文件夹中的所有文件
file_list = os.listdir('random_label')
file_list.sort()
labels = []
for file_name in file_list:
if file_name.endswith('.npy'):
label = np.load(os.path.join('random_label', file_name))
labels.append(label)
# 将NumPy数组转换为tensor
y = torch.tensor(labels)
# 将所有非零值设置为1
y[y != 0] = 1
```
这将生成一个名为y的tensor,其中包含40个元素,每个元素都是0或1。
相关问题
一个名为random_label的文件夹内有40个文件,名字分别为label_1.npy到label_40.npy,其中1-20中存储的值是0,21-40中存储的值是1,转换成一个名为y的形状为(40,)的tensor,其中y中只包含0和1两个值
可以使用Python中的NumPy库和PyTorch库来实现。代码如下:
```python
import numpy as np
import torch
y = np.zeros(40)
y[20:] = 1
y = torch.from_numpy(y)
```
首先,我们定义一个形状为(40,)的NumPy数组y,并将其全部初始化为0。然后,我们将y的第21个元素到最后一个元素(即20到39)的值设为1,以实现上述要求。最后,我们使用PyTorch的`from_numpy()`函数将NumPy数组y转换为PyTorch张量,并将其存储在名为y的变量中。
import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path1 = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(i) file_path1 = os.path.join(folder_path1, file_name) matrix1 = np.load(file_path1) x[j] = torch.from_numpy(matrix1).unsqueeze(0) folder_path2 = 'random_label2' y = torch.empty((40, 1)) for k in range(40): for k in range(40): file_name = 'label_{}.npy'.format(i) file_path2 = os.path.join(folder_path2, file_name) matrix2 = np.load(file_path2) y[k] = torch.from_numpy(matrix2).unsqueeze(0) for epoch in range(10): running_loss = 0.0 for i in range(40): inputs, labels = x[i], y[i] optimizer.zero_grad() outputs = net(inputs) optimizer.step() #running_loss += loss.item() #print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training') 加入loss可视化
你可以使用matplotlib库来可视化训练过程中的loss。可以在每个epoch结束后将loss存储到一个列表中,最后使用matplotlib库绘制出loss随epoch变化的曲线。示例代码如下:
```
import matplotlib.pyplot as plt
# 创建空列表,用于存储每个epoch的loss
losses = []
for epoch in range(10):
running_loss = 0.0
for i in range(40):
inputs, labels = x[i], y[i]
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
# 存储每个epoch的loss
losses.append(running_loss / 40)
print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40))
print('Finished Training')
# 绘制loss随epoch变化的曲线
plt.plot(losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()
```
这段代码会在每个epoch结束后将loss存储到列表losses中,最后使用matplotlib库绘制出loss随epoch变化的曲线。
阅读全文