python机器学习算法使用KaoKore数据集进行图像识别任务,Label.csv文件提供了标签和数据集的划分方式,需要完成两个任务。(1)区分性别2类;(2)区分身份4类。代码
时间: 2024-02-17 22:05:20 浏览: 196
好的,我来为您提供一下代码示例。首先需要导入相关的库:
``` python
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
```
然后读取数据集和标签文件:
``` python
data = np.load('KaoKore.npy')
label = pd.read_csv('Label.csv')
```
接下来,我们需要将标签数据转换为One-Hot编码形式:
``` python
gender_data = pd.get_dummies(label['Gender'], prefix='gender')
identity_data = pd.get_dummies(label['Identity'], prefix='identity')
```
然后,我们需要将数据集和标签数据按照划分方式进行划分,可以使用train_test_split函数进行划分:
``` python
gender_train_data, gender_test_data, gender_train_label, gender_test_label = train_test_split(data, gender_data, test_size=0.2, random_state=42)
identity_train_data, identity_test_data, identity_train_label, identity_test_label = train_test_split(data, identity_data, test_size=0.2, random_state=42)
```
接下来,我们需要搭建模型,这里可以使用卷积神经网络(CNN):
``` python
def create_model():
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Dropout(0.25))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(2, activation='softmax'))
return model
```
这里只是一个简单的CNN模型,可以根据实际情况进行调整。
接下来,我们需要编译模型,并进行训练:
``` python
gender_model = create_model()
gender_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
gender_model.fit(gender_train_data, gender_train_label, batch_size=128, epochs=10, verbose=1, validation_data=(gender_test_data, gender_test_label))
identity_model = create_model()
identity_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
identity_model.fit(identity_train_data, identity_train_label, batch_size=128, epochs=10, verbose=1, validation_data=(identity_test_data, identity_test_label))
```
最后,我们可以使用测试集进行验证:
``` python
gender_score = gender_model.evaluate(gender_test_data, gender_test_label, verbose=0)
identity_score = identity_model.evaluate(identity_test_data, identity_test_label, verbose=0)
print('Gender accuracy:', gender_score[1])
print('Identity accuracy:', identity_score[1])
```
以上就是一个简单的使用KaoKore数据集进行图像识别任务的示例代码,具体的细节可以根据实际情况进行调整。
阅读全文