机器学习算法使用KaoKore数据集进行图像识别任务,Label.csv文件提供了标签和数据集的划分方式,需要完成两个任务。(1)区分性别2类;(2)区分身份4类。,代码
时间: 2024-02-17 19:04:44 浏览: 163
基于机器学习的遥感图像识别算法(kNN/SVM/CNN/LSTM)+源代码+文档说明
5星 · 资源好评率100%
好的,这是一个机器学习中的分类任务,可以使用深度学习模型进行图像分类。以下是使用PyTorch框架实现的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# 定义模型
class Classifier(nn.Module):
def __init__(self, num_classes):
super(Classifier, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.classifier = nn.Sequential(
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(1024, num_classes)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# 数据预处理
transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# 加载数据集
train_dataset = datasets.ImageFolder(root='path/to/train/dataset', transform=transform)
test_dataset = datasets.ImageFolder(root='path/to/test/dataset', transform=transform)
# 划分数据集
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=True)
# 定义模型和优化器
model = Classifier(num_classes=4)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 测试模型
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
```
这里我们使用了一个简单的卷积神经网络作为模型。根据问题要求,分类任务包括区分性别2类和区分身份4类,这里设置 `num_classes=4`。在训练过程中,使用交叉熵损失函数和Adam优化器进行模型训练,训练10个epoch后进行测试。
阅读全文