plt.plot(history.history[metric]) plt.plot(history.history['val_'+metric], '') plt.xlabel("Epochs") plt.ylabel(metric) plt.legend([metric, 'val_'+metric]) plt.show() plot_graphs(history, 'accuracy') plot_graphs(history, 'loss')

时间: 2024-01-11 08:04:02 浏览: 30
这是一段用于绘制训练过程中指标变化曲线的代码。它使用Matplotlib库绘制了两条曲线,分别表示训练集和验证集在某个指标(metric)上的表现。其中,history是一个记录了训练过程中指标变化的对象,它包含了训练集和验证集在每个epoch上的指标值。plt.plot函数用于绘制曲线,plt.xlabel和plt.ylabel函数分别用于设置x轴和y轴的标签,plt.legend函数用于设置图例。接下来,plot_graphs函数分别绘制了训练集和验证集在accuracy和loss指标上的变化曲线。这些曲线可以帮助我们判断模型在训练过程中是否出现了过拟合或欠拟合等问题,并且可以帮助我们选择最优的模型。
相关问题

def plot_training(history=None, metric='acc', title='Model Accuracy', loc='lower right'): model_list = [] fig = plt.figure(figsize=(10, 8)) for key, val in history.items(): model_list.append(key.replace(HISTORY_DIR, '').rstrip('.history')) plt.plot(val[metric]) plt.title(title) plt.ylabel(metric) plt.xlabel('epoch') plt.legend(model_list, loc=loc) plt.show()

这段代码是一个用于绘制模型训练历史数据的函数。它接受一个历史数据字典,用于绘制每个模型在训练过程中的准确率或损失率的变化。metric参数指定绘制的指标,可以是"acc"(准确率)或"loss"(损失率),title参数指定图表标题,loc参数指定图例的位置。在函数中,首先创建一个画布,然后遍历历史数据字典中的每个模型,将其准确率或损失率绘制到图表中。最后展示图表。

import numpy as np import tensorflow_datasets as tfds import tensorflow as tf tfds.disable_progress_bar() import matplotlib.pyplot as plt def plot_graphs(history, metric):   plt.plot(history.history[metric])   plt.plot(history.history['val_'+metric], '')   plt.xlabel("Epochs")   plt.ylabel(metric)   plt.legend([metric, 'val_'+metric]) dataset, info = tfds.load('imdb_reviews', with_info=True,                           as_supervised=True) train_dataset, test_dataset = dataset['train'], dataset['test'] train_dataset.element_spec for example, label in train_dataset.take(1):   print('text: ', example.numpy())   print('label: ', label.numpy()) BUFFER_SIZE = 10000 BATCH_SIZE = 64 train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE) test_dataset = test_dataset.batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE) for example, label in train_dataset.take(1):   print('texts: ', example.numpy()[:3])   print()   print('labels: ', label.numpy()[:3]) VOCAB_SIZE = 1000 encoder = tf.keras.layers.TextVectorization(     max_tokens=VOCAB_SIZE) encoder.adapt(train_dataset.map(lambda text, label: text)) vocab = np.array(encoder.get_vocabulary()) vocab[:20] encoded_example = encoder(example)[:3].numpy() encoded_example for n in range(3):   print("Original: ", example[n].numpy())   print("Round-trip: ", " ".join(vocab[encoded_example[n]]))   print()解释一下这些代码。

这段代码是使用TensorFlow和TensorFlow Datasets加载IMDB电影评论数据集,然后对数据集进行预处理和向量化,以便进行情感分析的训练。下面是代码的详细解释: 1. 导入必要的库: ``` import numpy as np import tensorflow_datasets as tfds import tensorflow as tf import matplotlib.pyplot as plt ``` 2. 禁用进度条,以免在输出过程中出现过多的信息: ``` tfds.disable_progress_bar() ``` 3. 加载IMDB评论数据集并获取有关数据集的信息: ``` dataset, info = tfds.load('imdb_reviews', with_info=True, as_supervised=True) train_dataset, test_dataset = dataset['train'], dataset['test'] ``` 4. 查看数据集中的一个示例,并输出文本和标签: ``` for example, label in train_dataset.take(1): print('text: ', example.numpy()) print('label: ', label.numpy()) ``` 5. 定义缓冲区大小和批次大小,并对训练和测试数据集进行批处理和预取: ``` BUFFER_SIZE = 10000 BATCH_SIZE = 64 train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE) test_dataset = test_dataset.batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE) ``` 6. 查看训练数据集中的前三个示例的文本和标签: ``` for example, label in train_dataset.take(1): print('texts: ', example.numpy()[:3]) print() print('labels: ', label.numpy()[:3]) ``` 7. 定义词汇表大小和文本向量化层,然后使用`adapt`方法对训练数据集进行适应: ``` VOCAB_SIZE = 1000 encoder = tf.keras.layers.TextVectorization(max_tokens=VOCAB_SIZE) encoder.adapt(train_dataset.map(lambda text, label: text)) ``` 8. 获取词汇表并输出前20个词汇: ``` vocab = np.array(encoder.get_vocabulary()) vocab[:20] ``` 9. 对一个示例进行编码,并输出编码结果: ``` encoded_example = encoder(example)[:3].numpy() encoded_example ``` 10. 对编码后的示例进行反向转换并输出结果: ``` for n in range(3): print("Original: ", example[n].numpy()) print("Round-trip: ", " ".join(vocab[encoded_example[n]])) print() ``` 该代码段中的主要任务是将IMDB评论数据集加载到TensorFlow中,并准备进行情感分析训练。它包含了对数据的处理、向量化和预处理等步骤,是进行自然语言处理任务的常见流程。

相关推荐

import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuracy') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]train_data.shape[2]) # 60000784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]test_data.shape[2]) # 10000784 We next change label number to a 10 dimensional vector, e.g., 1-> train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 we build a three layer model, 784 -> 64 -> 10 MLP_3 = keras.models.Sequential([ keras.layers.Dense(128, input_shape=(784,),activation='relu'), keras.layers.Dense(64, activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_3.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_3.fit(train_data,train_labels, batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history对于该模型,使用不同数量的训练数据(5000,10000,15000,…,60000,公差=5000的等差数列),绘制训练集和测试集准确率(纵轴)关于训练数据大小(横轴)的曲线

import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt ## Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuarcy')# ax.set_ylabel('Categorical Crossentropy Loss') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) ## We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() ## We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]*train_data.shape[2]) # 60000*784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]*test_data.shape[2]) # 10000*784 ## We next change label number to a 10 dimensional vector, e.g., 1->[0,1,0,0,0,0,0,0,0,0] train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) ## start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 # ## we build a three layer model, 784 -> 64 -> 10 MLP_3 = keras.models.Sequential([ keras.layers.Dense(64, input_shape=(784,),activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_3.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_3.fit(train_data,train_labels, batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history['val_accuracy']模仿此段代码,写一个双隐层感知器(输入层784,第一隐层128,第二隐层64,输出层10)

import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt ## Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuarcy')# ax.set_ylabel('Categorical Crossentropy Loss') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) ## We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() ## We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]train_data.shape[2]) # 60000784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]test_data.shape[2]) # 10000784 ## We next change label number to a 10 dimensional vector, e.g., 1->[0,1,0,0,0,0,0,0,0,0] train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) ## start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 ## we build a three layer model, 784 -> 64 -> 10 MLP_4 = keras.models.Sequential([ keras.layers.Dense(128, input_shape=(784,),activation='relu'), keras.layers.Dense(64,activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_4.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_4.fit(train_data[:10000],train_labels[:10000], batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history['val_accuracy']在该模型中加入early stopping,使用monitor='loss', patience = 2设置代码

最新推荐

recommend-type

matplotlib 曲线图 和 折线图 plt.plot()实例

在Python的可视化库matplotlib中,`plt.plot()`函数是用于绘制曲线图和折线图的主要工具。本实例展示了如何利用这个函数创建具有不同特性的图形。以下是对matplotlib中曲线图和折线图的理解以及`plt.plot()`的具体...
recommend-type

解决python中显示图片的plt.imshow plt.show()内存泄漏问题

主要介绍了解决python中显示图片的plt.imshow plt.show()内存泄漏问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Python设置matplotlib.plot的坐标轴刻度间隔以及刻度范围

plt.xlabel('Numbers', fontsize=14) plt.ylabel('Squares', fontsize=14) plt.show() ``` 如果默认的刻度间隔和范围不符合需求,我们可以手动进行调整。这里引入了`MultipleLocator`类,它是matplotlib中的一个...
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:Python环境变量配置实战:Win10系统下Python环境变量配置详解

![python配置环境变量win10](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量配置概述 环境变量是计算机系统中存储和管理配置信息的特殊变量。在Python中,环境变量用于指定Python解释器和库的安装路径,以及其他影响