该代码中给出报错numpy.AxisError: axis 1 is out of bounds for array of dimension 1该如何修改
时间: 2024-03-21 14:41:24 浏览: 159
编译 pycaffe时报错:fatal error: numpy/arrayobject.h没有那个文件或目录
报错 "numpy.AxisError: axis 1 is out of bounds for array of dimension 1" 是因为在代码的第 27 行使用了 `axis=(1,2)` 参数,但是 `features` 数组的维度不足以支持这个参数。
为了解决这个问题,可以使用以下代码将 `features` 变量的维度从 `(n, c, 1, 1)` 转换为 `(c, 1, 1)`:
```python
# Reshape features to remove single-dimensional axes
features = features.squeeze()
if len(features.shape) == 3:
features = features.unsqueeze(-1)
if len(features.shape) == 2:
features = features.unsqueeze(-1).unsqueeze(-1)
```
这段代码会检查 `features` 数组的维度是否为 `(n, c, 1, 1)`,如果是,会先使用 `squeeze()` 方法删除所有大小为 1 的维度。如果删除后的维度为 `(c, 1, 1)`,则不需要进一步操作。否则,会使用 `unsqueeze()` 方法添加缺少的维度。
这样处理之后,就可以在第 27 行使用 `axis=(0,1)` 参数,而不会出现维度错误。
完整修改后的代码如下:
```python
import torch
import torch.nn as nn
from torchvision import models, transforms
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
# Load pre-trained ResNet-18 model
model = models.resnet18(pretrained=True)
# Remove the fully connected layer from the model
model = nn.Sequential(*list(model.children())[:-1])
# Set model to evaluation mode
model.eval()
# Define image transformation to match the pre-processing used during training
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Load sample image
img = Image.open('sample_image.jpg')
# Apply transformation and convert to tensor
img_tensor = transform(img).unsqueeze(0)
# Pass image tensor through ResNet-18 to get feature maps
with torch.no_grad():
features = model(img_tensor)
# Reshape features to remove single-dimensional axes
features = features.squeeze()
if len(features.shape) == 3:
features = features.unsqueeze(-1)
if len(features.shape) == 2:
features = features.unsqueeze(-1).unsqueeze(-1)
# Calculate global average pooling of feature maps
pooled_features = np.mean(features, axis=(1,2))
# Reshape pooled features to match spatial dimensions of feature maps
pooled_features = np.repeat(pooled_features, features.shape[1]*features.shape[2]).reshape(features.shape)
# Calculate importance of each feature map by comparing it to the global average
heatmap = np.abs(features - pooled_features)
# Normalize heatmap to range between 0 and 1
heatmap = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap))
# Plot heatmap on top of original image
plt.imshow(img)
plt.imshow(heatmap.sum(axis=0), alpha=0.5, cmap='jet')
plt.axis('off')
plt.show()
```
希望能对您有所帮助!
阅读全文