sift算法的图像拼接与融合代码
时间: 2023-06-24 17:02:39 浏览: 131
sift算法的图像拼接
### 回答1:
SIFT算法是一种常用的图像特征提取算法。在图像拼接与融合中,SIFT算法可以提取图像的特征点,并进行匹配和变换,从而实现拼接与融合的目的。
下面是一个简单的SIFT算法的图像拼接与融合代码:
1. 导入模块和图像
```
import cv2
import numpy as np
img1 = cv2.imread("image1.jpg")
img2 = cv2.imread("image2.jpg")
```
2. SIFT算法提取特征点
```
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
```
3. 特征点匹配
```
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2,k=2)
good = []
for m,n in matches:
if m.distance < 0.75*n.distance:
good.append(m)
```
4. 计算变换矩阵
```
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1,1,2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
```
5. 图像拼接
```
matchesMask = mask.ravel().tolist()
h,w,d = img1.shape
pts = np.float32([[0,0],[0,h-1],[w-1,h-1],[w-1,0]]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts,M)
img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)
dst = cv2.warpPerspective(img1,M,(img2.shape[1],img2.shape[0]))
dst[0:img2.shape[0],0:img2.shape[1]] = img2
```
6. 显示结果
```
cv2.imshow("result",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
以上代码简单地实现了SIFT算法的图像拼接与融合,仅供参考。在实际应用中,还需要对代码进行进一步修改和优化,以达到更好的效果。
### 回答2:
SIFT算法是一种基于尺度空间和特征点匹配的图像处理方法,它广泛应用于图像拼接和融合领域。下面是SIFT算法的图像拼接与融合代码:
1. 导入需要拼接的图像,并进行图像预处理,包括RGB转灰度、高斯滤波、直方图均衡化等操作。
2. 利用SIFT算法提取两幅图像中的关键点和特征描述子。其中,关键点是指图像中的显著特征点,例如边缘和角点;特征描述子是指描述关键点的局部特征向量。
3. 对提取出的特征描述子进行匹配,找出两幅图像中相匹配的关键点。
4. 根据匹配的关键点进行图像拼接,可以选择利用图像配准或者单应性变换的方法进行。
5. 最后,进行图像融合。常见的融合方法有基于Laplacian金字塔的融合法和基于图像变形的融合法等。
代码示例:
import cv2
import numpy as np
# 导入需要拼接的图像
img1 = cv2.imread('image1.jpg')
img2 = cv2.imread('image2.jpg')
# 图像预处理
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
gray1 = cv2.GaussianBlur(gray1, (5,5), 0)
gray2 = cv2.GaussianBlur(gray2, (5,5), 0)
gray1 = cv2.equalizeHist(gray1)
gray2 = cv2.equalizeHist(gray2)
# SIFT算法提取关键点和特征描述子
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(gray1, None)
kp2, des2 = sift.detectAndCompute(gray2, None)
# 特征点匹配
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
matches = bf.match(des1, des2)
matches = sorted(matches, key=lambda x:x.distance)
# 图像拼接
src_pts = np.float32([kp1[m.queryIdx].pt for m in matches]).reshape(-1,1,2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in matches]).reshape(-1,1,2)
H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
result = cv2.warpPerspective(img1, H, (img2.shape[1]+img1.shape[1], img2.shape[0]))
result[0:img2.shape[0], 0:img2.shape[1]] = img2
# 图像融合
# 方法一:基于Laplacian金字塔的融合法
level = 3
gaussian_pyramid1 = [gray1]
gaussian_pyramid2 = [gray2]
for i in range(level):
gaussian_pyramid1.append(cv2.pyrDown(gaussian_pyramid1[i]))
gaussian_pyramid2.append(cv2.pyrDown(gaussian_pyramid2[i]))
laplacian_pyramid1 = [gaussian_pyramid1[level-1]]
laplacian_pyramid2 = [gaussian_pyramid2[level-1]]
for i in range(level-1, 0, -1):
laplacian = cv2.subtract(gaussian_pyramid1[i-1], cv2.pyrUp(gaussian_pyramid1[i]))
laplacian_pyramid1.append(laplacian)
laplacian = cv2.subtract(gaussian_pyramid2[i-1], cv2.pyrUp(gaussian_pyramid2[i]))
laplacian_pyramid2.append(laplacian)
laplacian_pyramid = []
for la1, la2 in zip(laplacian_pyramid1, laplacian_pyramid2):
rows, cols = la1.shape
laplacian = np.hstack((la1[:,0:int(cols/2)], la2[:,int(cols/2):])))
laplacian_pyramid.append(laplacian)
result_pyramid = laplacian_pyramid[0]
for i in range(1, level):
result_pyramid = cv2.pyrUp(result_pyramid)
result_pyramid = cv2.add(result_pyramid, laplacian_pyramid[i])
result1 = cv2.subtract(gray1, result_pyramid)
result2 = cv2.subtract(gray2, result_pyramid)
result = cv2.merge((result1, result2, result_pyramid))
# 方法二:基于图像变形的融合法
# 具体实现可参考以下链接:
# https://nbviewer.jupyter.org/github/mesutsariyer/Python-Image-Processing/blob/master/Chapter7/PerspectiveTransform.ipynb
### 回答3:
SIFT算法是一种常用的图像拼接与融合方法,它能够通过计算图像的特征点来实现图像拼接与融合。下面是SIFT算法的图像拼接与融合代码:
1. 导入必要模块与库
import numpy as np
import cv2
2. 读取图片并提取特征点
img_1 = cv2.imread('img1.jpg')
img_2 = cv2.imread('img2.jpg')
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img_1,None)
kp2, des2 = sift.detectAndCompute(img_2,None)
3. 匹配特征点
BF = cv2.BFMatcher()
matches = BF.knnMatch(des1,des2,k=2)
good = []
for m,n in matches:
if m.distance < 0.75*n.distance:
good.append([m])
4. 图像拼接与融合
MIN_MATCH_COUNT = 10
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m[0].queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m[0].trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
h,w,d = img_1.shape
result = cv2.warpPerspective(img_1, M, (w+img_2.shape[1],h))
result[0:img_2.shape[0], 0:img_2.shape[1]] = img_2
else:
print "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT)
5. 显示结果
cv2.imshow('result',result)
cv2.waitKey(0)
cv2.destroyAllWindows()
通过以上的SIFT算法的图像拼接与融合代码,我们可以实现图像的拼接与融合,并且可以获取比较准确的拼接结果。当然,在实际应用中,我们需要根据不同的图像特点进行针对性的调整,并可能需要使用其他算法进行辅助。
阅读全文