louvain算法matlab实现,不定义函数模块
时间: 2023-06-27 22:05:45 浏览: 123
以下是Louvain算法的Matlab实现,不需要定义函数模块。代码中使用了一个名为"network"的矩阵来表示网络,该矩阵的每一行表示一条边,第一列是源节点,第二列是目标节点,第三列是边的权重。
```matlab
% 读取网络数据
network = dlmread('network.txt');
% 获取节点数和边数
num_nodes = max(max(network(:, 1)), max(network(:, 2)));
num_edges = size(network, 1);
% 初始化每个节点的社区标签为它自己
node_labels = 1:num_nodes;
% 初始化每个社区的节点集合
communities = cell(1,num_nodes);
for i=1:num_nodes
communities{i} = i;
end
delta_modularity = 1;
while delta_modularity > 0
delta_modularity = 0;
% 对每个节点进行遍历
for i=1:num_nodes
neighbors = find(network(:,1) == i | network(:,2) == i); % 获取与当前节点相邻的边
if isempty(neighbors)
continue;
end
% 计算当前节点在当前社区中的模块度
current_community = node_labels(i);
current_in_degree = sum(network(neighbors, 3));
current_out_degree = sum(network(node_labels(neighbors) ~= current_community, 3));
current_modularity = current_in_degree - current_out_degree;
% 在相邻的社区中寻找最大的模块度增量
max_modularity_increase = -inf;
new_community = current_community;
for j=1:length(neighbors)
neighbor = neighbors(j);
neighbor_node = network(neighbor, 1);
if neighbor_node == i
neighbor_node = network(neighbor, 2);
end
neighbor_community = node_labels(neighbor_node);
if neighbor_community == current_community
continue;
end
neighbor_in_degree = sum(network(node_labels == neighbor_community & (network(:,1) == neighbor_node | network(:,2) == neighbor_node), 3));
neighbor_out_degree = sum(network(node_labels == neighbor_community & ~(network(:,1) == neighbor_node | network(:,2) == neighbor_node), 3));
modularity_increase = neighbor_in_degree - neighbor_out_degree;
if modularity_increase > max_modularity_increase
max_modularity_increase = modularity_increase;
new_community = neighbor_community;
end
end
% 如果找到了更优的社区,则更新当前节点的社区标签
if max_modularity_increase > 0
node_labels(i) = new_community;
communities{current_community} = communities{current_community}(communities{current_community} ~= i);
communities{new_community} = [communities{new_community} i];
delta_modularity = delta_modularity + max_modularity_increase;
end
end
end
% 输出最终的社区划分
for i=1:num_nodes
fprintf('%d belongs to community %d\n', i, node_labels(i));
end
```
需要注意的是,该实现中使用的是贪心策略,可能会陷入局部最优解。为了解决这个问题,可以多次运行算法并随机初始化每个节点的社区标签,然后选择模块度最大的一次划分结果作为最终结果。
阅读全文