Parameters ---------- present_features: 5-D output from dynamics module with shape (b, 1, c, h, w) future_distribution_inputs: 5-D tensor containing labels shape (b, s, cfg.PROB_FUTURE_DIM, h, w) noise: a sample from a (0, 1) gaussian with shape (b, s, latent_dim). If None, will sample in function Returns ------- sample: sample taken from present/future distribution, broadcast to shape (b, s, latent_dim, h, w) present_distribution_mu: shape (b, s, latent_dim) present_distribution_log_sigma: shape (b, s, latent_dim) future_distribution_mu: shape (b, s, latent_dim) future_distribution_log_sigma: shape (b, s, latent_dim)怎么理解?
时间: 2024-04-04 07:32:16 浏览: 166
这段代码是一个函数的参数和返回值的说明。其中,函数输入的参数包括:
1. `present_features`: 是Dynamics Module的输出,是一个5维的张量,形状为`(b, 1, c, h, w)`,其中`b`表示batch size,`c`表示feature channel,`h`和`w`表示feature map的高和宽。
2. `future_distribution_inputs`: 是一个5维的张量,包含了标签信息,形状为`(b, s, cfg.PROB_FUTURE_DIM, h, w)`,其中`s`表示样本数,`cfg.PROB_FUTURE_DIM`是未来状态的维度,`h`和`w`表示feature map的高和宽。
3. `noise`: 是一个从标准正态分布中采样的噪声张量,形状为`(b, s, latent_dim)`。这个参数是可选的,如果不提供,则在函数内部进行采样。
函数的返回值包括:
1. `sample`: 是从当前/未来分布中采样得到的样本,形状为`(b, s, latent_dim, h, w)`。这里的`latent_dim`表示潜在空间的维度。
2. `present_distribution_mu`: 当前分布的均值,形状为`(b, s, latent_dim)`。
3. `present_distribution_log_sigma`: 当前分布的对数标准差,形状为`(b, s, latent_dim)`。
4. `future_distribution_mu`: 未来分布的均值,形状为`(b, s, latent_dim)`。
5. `future_distribution_log_sigma`: 未来分布的对数标准差,形状为`(b, s, latent_dim)`。
总的来说,这个函数的作用是从当前和未来的分布中采样得到隐变量样本,并返回这些分布的均值和对数标准差。
阅读全文