dice loss的keras代码
时间: 2023-08-30 13:10:39 浏览: 71
下面是Dice Loss的Keras代码实现:
```python
import tensorflow as tf
from tensorflow.keras.backend import flatten
def dice_coef(y_true, y_pred, smooth=1):
intersection = tf.reduce_sum(y_true * y_pred, axis=[1,2,3])
union = tf.reduce_sum(y_true, axis=[1,2,3]) + tf.reduce_sum(y_pred, axis=[1,2,3])
dice = tf.reduce_mean((2. * intersection + smooth)/(union + smooth), axis=0)
return dice
def dice_loss(y_true, y_pred):
loss = 1 - dice_coef(y_true, y_pred)
return loss
```
其中,`dice_coef`函数计算Dice系数,`dice_loss`函数计算Dice Loss。`y_true`和`y_pred`都是四维的张量,分别表示真实标签和预测标签。在计算Dice系数时,需要对每个样本分别计算交集和并集,并对所有样本的Dice系数求平均。在计算Dice Loss时,需要将Dice系数减一,因为Dice系数越大表示两个分布越相似,而Loss越小表示两个分布越相似。
相关问题
ValueError: Unknown loss function: dice_coef_loss. Please ensure this object is passed to the `custom_objects` argument. See https://www.tensorflow.org/guide/keras/save_and_serialize#registering_the_custom_object for details.
这个错误是因为您在使用Keras模型时使用了名为"dice_coef_loss"的自定义损失函数,但是您没有在保存模型时将该函数注册到Keras的自定义对象中。要解决此问题,您需要使用以下代码将自定义函数注册到Keras的自定义对象中:
```
from keras.utils.generic_utils import get_custom_objects
from <your_module> import dice_coef_loss
# 注册自定义函数
custom_objects = {'dice_coef_loss': dice_coef_loss}
get_custom_objects().update(custom_objects)
```
在上面的代码中,`<your_module>`应替换为包含自定义函数的模块名称。一旦您将自定义函数注册到Keras的自定义对象中,您就可以加载保存的模型,并且Keras将能够正确识别自定义损失函数。
import os import random import numpy as np import cv2 import keras from create_unet import create_model img_path = 'data_enh/img' mask_path = 'data_enh/mask' # 训练集与测试集的切分 img_files = np.array(os.listdir(img_path)) data_num = len(img_files) train_num = int(data_num * 0.8) train_ind = random.sample(range(data_num), train_num) test_ind = list(set(range(data_num)) - set(train_ind)) train_ind = np.array(train_ind) test_ind = np.array(test_ind) train_img = img_files[train_ind] # 训练的数据 test_img = img_files[test_ind] # 测试的数据 def get_mask_name(img_name): mask = [] for i in img_name: mask_name = i.replace('.jpg', '.png') mask.append(mask_name) return np.array(mask) train_mask = get_mask_name(train_img) test_msak = get_mask_name(test_img) def generator(img, mask, batch_size): num = len(img) while True: IMG = [] MASK = [] for i in range(batch_size): index = np.random.choice(num) img_name = img[index] mask_name = mask[index] img_temp = os.path.join(img_path, img_name) mask_temp = os.path.join(mask_path, mask_name) temp_img = cv2.imread(img_temp) temp_mask = cv2.imread(mask_temp, 0)/255 temp_mask = np.reshape(temp_mask, [256, 256, 1]) IMG.append(temp_img) MASK.append(temp_mask) IMG = np.array(IMG) MASK = np.array(MASK) yield IMG, MASK # train_data = generator(train_img, train_mask, 32) # temp_data = train_data.__next__() # 计算dice系数 def dice_coef(y_true, y_pred): y_true_f = keras.backend.flatten(y_true) y_pred_f = keras.backend.flatten(y_pred) intersection = keras.backend.sum(y_true_f * y_pred_f) area_true = keras.backend.sum(y_true_f * y_true_f) area_pred = keras.backend.sum(y_pred_f * y_pred_f) dice = (2 * intersection + 1)/(area_true + area_pred + 1) return dice # 自定义损失函数,dice_loss def dice_coef_loss(y_true, y_pred): return 1 - dice_coef(y_true, y_pred) # 模型的创建 model = create_model() # 模型的编译 model.compile(optimizer='Adam', loss=dice_coef_loss, metrics=[dice_coef]) # 模型的训练 history = model.fit_generator(generator(train_img, train_mask, 4), steps_per_epoch=100, epochs=10, validation_data=generator(test_img, test_msak, 4), validation_steps=4 ) # 模型的保存 model.save('unet_model.h5') # 模型的读取 model = keras.models.load_model('unet_model.h5', custom_objects={'dice_coef_loss': dice_coef_loss, 'dice_coef': dice_coef}) # 获取测试数据 test_generator = generator(test_img, test_msak, 32) img, mask = test_generator.__next__() # 模型的测试 model.evaluate(img, mask) # [0.11458712816238403, 0.885412871837616] 94%
上面这段代码是在导入一些库。它导入了 OS 库,Random 库,NumPy 库,CV2 库,Keras 库,以及一个叫做 Create_unet 的自定义模块。它还定义了两个字符串变量:img_path 和 mask_path,分别存储了图像数据和掩码数据的路径。
阅读全文