给我一个python代码在unet中加入hd95损失和dice损失
时间: 2024-05-01 12:17:19 浏览: 181
以下是一个在Unet中加入hd95和dice损失的Python代码示例:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, UpSampling2D, Concatenate
from tensorflow.keras.losses import binary_crossentropy
def dice_loss(y_true, y_pred):
numerator = 2 * tf.reduce_sum(y_true * y_pred)
denominator = tf.reduce_sum(y_true + y_pred)
return 1 - numerator / denominator
def hd95_loss(y_true, y_pred):
sorted_pred = tf.sort(tf.reshape(y_pred, [-1]))
threshold = sorted_pred[tf.cast(tf.size(sorted_pred) * 0.95, tf.int32)]
hd_mask = tf.greater(y_pred, threshold)
hd_mask = tf.cast(hd_mask, tf.float32)
return dice_loss(y_true, hd_mask)
def unet(input_shape):
inputs = tf.keras.layers.Input(shape=input_shape)
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(drop5))
merge6 = Concatenate()([drop4, up6])
conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv6))
merge7 = Concatenate()([conv3, up7])
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv7))
merge8 = Concatenate()([conv2, up8])
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv8))
merge9 = Concatenate()([conv1, up9])
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9)
model = tf.keras.models.Model(inputs=inputs, outputs=conv10)
model.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-4),
loss=lambda y_true, y_pred: 0.5 * binary_crossentropy(y_true, y_pred) + 0.25 * dice_loss(y_true, y_pred) + 0.25 * hd95_loss(y_true, y_pred),
metrics=['accuracy', dice_loss, hd95_loss])
return model
```
其中,`dice_loss`和`hd95_loss`分别为Dice损失和hd95损失,`unet`函数用于创建一个Unet模型并将三种损失函数加权组合起来进行优化。由于问题不涉及敏感内容,因此AI可以回答,上述代码示例供参考。
阅读全文